## Transfers of Chern classes in BP-cohomology and Chow rings

HTML articles powered by AMS MathViewer

- by Björn Schuster and Nobuaki Yagita PDF
- Trans. Amer. Math. Soc.
**353**(2001), 1039-1054 Request permission

## Abstract:

The $BP^*$-module structure of $BP^*(BG)$ for extraspecial $2$-groups is studied using transfer and Chern classes. These give rise to $p$-torsion elements in the kernel of the cycle map from the Chow ring to ordinary cohomology first obtained by Totaro.## References

- J. F. Adams,
*Lectures on exceptional Lie groups*, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1996. With a foreword by J. Peter May; Edited by Zafer Mahmud and Mamoru Mimura. MR**1428422** - Erich Rothe,
*Topological proofs of uniqueness theorems in the theory of differential and integral equations*, Bull. Amer. Math. Soc.**45**(1939), 606–613. MR**93**, DOI 10.1090/S0002-9904-1939-07048-1 - K. Geetha,
*The semigroup of singular endomorphisms*, Semigroup Forum**58**(1999), no. 2, 207–221. MR**1658646**, DOI 10.1007/s002339900015 - David John Green and Pham Anh Minh,
*Transfer and Chern classes for extraspecial $p$-groups*, Group representations: cohomology, group actions and topology (Seattle, WA, 1996) Proc. Sympos. Pure Math., vol. 63, Amer. Math. Soc., Providence, RI, 1998, pp. 245–255. MR**1603167**, DOI 10.1090/pspum/063/1603167 - Masana Harada and Akira Kono,
*On the integral cohomology of extraspecial $2$-groups*, Proceedings of the Northwestern conference on cohomology of groups (Evanston, Ill., 1985), 1987, pp. 215–219. MR**885105**, DOI 10.1016/0022-4049(87)90025-9 - Michael J. Hopkins, Nicholas J. Kuhn, and Douglas C. Ravenel,
*Morava $K$-theories of classifying spaces and generalized characters for finite groups*, Algebraic topology (San Feliu de Guíxols, 1990) Lecture Notes in Math., vol. 1509, Springer, Berlin, 1992, pp. 186–209. MR**1185970**, DOI 10.1007/BFb0087510 - Akira Kono and Nobuaki Yagita,
*Brown-Peterson and ordinary cohomology theories of classifying spaces for compact Lie groups*, Trans. Amer. Math. Soc.**339**(1993), no. 2, 781–798. MR**1139493**, DOI 10.1090/S0002-9947-1993-1139493-4 - Igor Kriz,
*Morava $K$-theory of classifying spaces: some calculations*, Topology**36**(1997), no. 6, 1247–1273. MR**1452850**, DOI 10.1016/S0040-9383(96)00049-3 - Daniel Quillen,
*The $\textrm {mod}$ $2$ cohomology rings of extra-special $2$-groups and the spinor groups*, Math. Ann.**194**(1971), 197–212. MR**290401**, DOI 10.1007/BF01350050 - D. C. Ravenel, W. S. Wilson and N. Yagita. Brown-Peterson cohomology from Morava $K$-theory. $K$-Theory
**15**(1998), 147–199. - Björn Schuster,
*On the Morava $K$-theory of some finite $2$-groups*, Math. Proc. Cambridge Philos. Soc.**121**(1997), no. 1, 7–13. MR**1418356**, DOI 10.1017/S0305004196001156 - Burt Totaro,
*Torsion algebraic cycles and complex cobordism*, J. Amer. Math. Soc.**10**(1997), no. 2, 467–493. MR**1423033**, DOI 10.1090/S0894-0347-97-00232-4 - B. Totaro. The Chow ring of classifying spaces. To appear.
- Nobuaki Yagita,
*Cohomology for groups of $\textrm {rank}_pG=2$ and Brown-Peterson cohomology*, J. Math. Soc. Japan**45**(1993), no. 4, 627–644. MR**1239340**, DOI 10.2969/jmsj/04540627 - Nobuaki Yagita,
*On relations between Brown-Peterson cohomology and the ordinary mod $p$ cohomology theory*, Kodai Math. J.**7**(1984), no. 2, 273–285. MR**744140**, DOI 10.2996/kmj/1138036912

## Additional Information

**Björn Schuster**- Affiliation: FB 7 Mathematik, Bergische Universität-Gesamthochschule Wuppertal, 42097 Wuppertal, Germany
- Email: schuster@math.uni-wuppertal.de
**Nobuaki Yagita**- Affiliation: Department of Mathematics, Faculty of Education, Ibaraki University, Mito, Ibaraki, Japan
- MR Author ID: 185110
- Email: yagita@mito.ipc.ibaraki.ac.jp
- Received by editor(s): March 29, 1999
- Published electronically: August 8, 2000
- © Copyright 2000 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**353**(2001), 1039-1054 - MSC (2000): Primary 55P35, 57T25; Secondary 55R35, 57T05
- DOI: https://doi.org/10.1090/S0002-9947-00-02647-7
- MathSciNet review: 1804412