A model for the homotopy theory of homotopy theory

Author:
Charles Rezk

Journal:
Trans. Amer. Math. Soc. **353** (2001), 973-1007

MSC (2000):
Primary 55U35; Secondary 18G30

DOI:
https://doi.org/10.1090/S0002-9947-00-02653-2

Published electronically:
June 20, 2000

MathSciNet review:
1804411

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We describe a category, the objects of which may be viewed as models for homotopy theories. We show that for such models, “functors between two homotopy theories form a homotopy theory”, or more precisely that the category of such models has a well-behaved internal hom-object.

- D. W. Anderson,
*Spectra and $\Gamma $-sets*, Algebraic topology (Proc. Sympos. Pure Math., Vol. XXII, Univ. Wisconsin, Madison, Wis., 1970) Amer. Math. Soc., Providence, R.I., 1971, pp. 23–30. MR**0367990** - A. K. Bousfield and D. M. Kan,
*Homotopy limits, completions and localizations*, Lecture Notes in Mathematics, Vol. 304, Springer-Verlag, Berlin-New York, 1972. MR**0365573** - W. G. Dwyer, P. Hirschhorn, and D. M. Kan,
*General abstract homotopy theory*, in preperation. - W. G. Dwyer and D. M. Kan,
*Function complexes in homotopical algebra*, Topology**19**(1980), no. 4, 427–440. MR**584566**, DOI https://doi.org/10.1016/0040-9383%2880%2990025-7 - W. G. Dwyer and D. M. Kan,
*A classification theorem for diagrams of simplicial sets*, Topology**23**(1984), no. 2, 139–155. MR**744846**, DOI https://doi.org/10.1016/0040-9383%2884%2990035-1 - W. G. Dwyer and D. M. Kan,
*A classification theorem for diagrams of simplicial sets*, Topology**23**(1984), no. 2, 139–155. MR**744846**, DOI https://doi.org/10.1016/0040-9383%2884%2990035-1 - W. G. Dwyer, D. M. Kan, and C. R. Stover,
*An $E^2$ model category structure for pointed simplicial spaces*, J. Pure Appl. Algebra**90**(1993), no. 2, 137–152. MR**1250765**, DOI https://doi.org/10.1016/0022-4049%2893%2990126-E - W. G. Dwyer and J. Spaliński,
*Homotopy theories and model categories*, Handbook of algebraic topology, North-Holland, Amsterdam, 1995, pp. 73–126. MR**1361887**, DOI https://doi.org/10.1016/B978-044481779-2/50003-1 - P. G. Goerss and J. F. Jardine,
*Simplicial homotopy theory*, Progress in Math., vol. 174, Birkhäuser, Basel, 1999. - Alex Heller,
*Homotopy theories*, Mem. Amer. Math. Soc.**71**(1988), no. 383, vi+78. MR**920963**, DOI https://doi.org/10.1090/memo/0383 - P. Hirschhorn,
*Localization in model categories*, http://www-math.mit.edu/$\sim$psh. - J. F. Jardine,
*Simplicial presheaves*, J. Pure Appl. Algebra**47**(1987), no. 1, 35–87. MR**906403**, DOI https://doi.org/10.1016/0022-4049%2887%2990100-9 - J. F. Jardine,
*Boolean localization, in practice*, Doc. Math.**1**(1996), No. 13, 245–275. MR**1405671** - J. Peter May,
*Simplicial objects in algebraic topology*, Van Nostrand Mathematical Studies, No. 11, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1967. MR**0222892** - Daniel G. Quillen,
*Homotopical algebra*, Lecture Notes in Mathematics, No. 43, Springer-Verlag, Berlin-New York, 1967. MR**0223432** - Daniel Quillen,
*Rational homotopy theory*, Ann. of Math. (2)**90**(1969), 205–295. MR**258031**, DOI https://doi.org/10.2307/1970725 - C. L. Reedy,
*Homotopy theory of model categories*, unpublished manuscript. - Graeme Segal,
*Categories and cohomology theories*, Topology**13**(1974), 293–312. MR**353298**, DOI https://doi.org/10.1016/0040-9383%2874%2990022-6 - R. W. Thomason,
*Uniqueness of delooping machines*, Duke Math. J.**46**(1979), no. 2, 217–252. MR**534053**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2000):
55U35,
18G30

Retrieve articles in all journals with MSC (2000): 55U35, 18G30

Additional Information

**Charles Rezk**

Affiliation:
Department of Mathematics, Northwestern University, Evanston, Illinois 60208

MR Author ID:
638495

ORCID:
0000-0003-4111-893X

Email:
rezk@math.nwu.edu

Keywords:
Homotopy theory,
simplicial spaces,
localization,
closed model categories

Received by editor(s):
November 4, 1998

Published electronically:
June 20, 2000

Article copyright:
© Copyright 2000
American Mathematical Society