## A model for the homotopy theory of homotopy theory

HTML articles powered by AMS MathViewer

- by Charles Rezk
- Trans. Amer. Math. Soc.
**353**(2001), 973-1007 - DOI: https://doi.org/10.1090/S0002-9947-00-02653-2
- Published electronically: June 20, 2000
- PDF | Request permission

## Abstract:

We describe a category, the objects of which may be viewed as models for homotopy theories. We show that for such models, “functors between two homotopy theories form a homotopy theory”, or more precisely that the category of such models has a well-behaved internal hom-object.## References

- D. W. Anderson,
*Spectra and $\Gamma$-sets*, Algebraic topology (Proc. Sympos. Pure Math., Vol. XXII, Univ. Wisconsin, Madison, Wis., 1970) Amer. Math. Soc., Providence, R.I., 1971, pp. 23–30. MR**0367990** - A. K. Bousfield and D. M. Kan,
*Homotopy limits, completions and localizations*, Lecture Notes in Mathematics, Vol. 304, Springer-Verlag, Berlin-New York, 1972. MR**0365573**, DOI 10.1007/978-3-540-38117-4 - W. G. Dwyer, P. Hirschhorn, and D. M. Kan,
*General abstract homotopy theory*, in preperation. - W. G. Dwyer and D. M. Kan,
*Function complexes in homotopical algebra*, Topology**19**(1980), no. 4, 427–440. MR**584566**, DOI 10.1016/0040-9383(80)90025-7 - W. G. Dwyer and D. M. Kan,
*A classification theorem for diagrams of simplicial sets*, Topology**23**(1984), no. 2, 139–155. MR**744846**, DOI 10.1016/0040-9383(84)90035-1 - W. G. Dwyer and D. M. Kan,
*A classification theorem for diagrams of simplicial sets*, Topology**23**(1984), no. 2, 139–155. MR**744846**, DOI 10.1016/0040-9383(84)90035-1 - W. G. Dwyer, D. M. Kan, and C. R. Stover,
*An $E^2$ model category structure for pointed simplicial spaces*, J. Pure Appl. Algebra**90**(1993), no. 2, 137–152. MR**1250765**, DOI 10.1016/0022-4049(93)90126-E - W. G. Dwyer and J. Spaliński,
*Homotopy theories and model categories*, Handbook of algebraic topology, North-Holland, Amsterdam, 1995, pp. 73–126. MR**1361887**, DOI 10.1016/B978-044481779-2/50003-1 - P. G. Goerss and J. F. Jardine,
*Simplicial homotopy theory*, Progress in Math., vol. 174, Birkhäuser, Basel, 1999. - Alex Heller,
*Homotopy theories*, Mem. Amer. Math. Soc.**71**(1988), no. 383, vi+78. MR**920963**, DOI 10.1090/memo/0383 - P. Hirschhorn,
*Localization in model categories*, http://www-math.mit.edu/$\sim$psh. - J. F. Jardine,
*Simplicial presheaves*, J. Pure Appl. Algebra**47**(1987), no. 1, 35–87. MR**906403**, DOI 10.1016/0022-4049(87)90100-9 - J. F. Jardine,
*Boolean localization, in practice*, Doc. Math.**1**(1996), No. 13, 245–275. MR**1405671** - J. Peter May,
*Simplicial objects in algebraic topology*, Van Nostrand Mathematical Studies, No. 11, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1967. MR**0222892** - Daniel G. Quillen,
*Homotopical algebra*, Lecture Notes in Mathematics, No. 43, Springer-Verlag, Berlin-New York, 1967. MR**0223432**, DOI 10.1007/BFb0097438 - Daniel Quillen,
*Rational homotopy theory*, Ann. of Math. (2)**90**(1969), 205–295. MR**258031**, DOI 10.2307/1970725 - C. L. Reedy,
*Homotopy theory of model categories*, unpublished manuscript. - Graeme Segal,
*Categories and cohomology theories*, Topology**13**(1974), 293–312. MR**353298**, DOI 10.1016/0040-9383(74)90022-6 - R. W. Thomason,
*Uniqueness of delooping machines*, Duke Math. J.**46**(1979), no. 2, 217–252. MR**534053**, DOI 10.1215/S0012-7094-79-04612-X

## Bibliographic Information

**Charles Rezk**- Affiliation: Department of Mathematics, Northwestern University, Evanston, Illinois 60208
- MR Author ID: 638495
- ORCID: 0000-0003-4111-893X
- Email: rezk@math.nwu.edu
- Received by editor(s): November 4, 1998
- Published electronically: June 20, 2000
- © Copyright 2000 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**353**(2001), 973-1007 - MSC (2000): Primary 55U35; Secondary 18G30
- DOI: https://doi.org/10.1090/S0002-9947-00-02653-2
- MathSciNet review: 1804411