A model for the homotopy theory of homotopy theory

Author:
Charles Rezk

Journal:
Trans. Amer. Math. Soc. **353** (2001), 973-1007

MSC (2000):
Primary 55U35; Secondary 18G30

DOI:
https://doi.org/10.1090/S0002-9947-00-02653-2

Published electronically:
June 20, 2000

MathSciNet review:
1804411

Full-text PDF

Abstract | References | Similar Articles | Additional Information

We describe a category, the objects of which may be viewed as models for homotopy theories. We show that for such models, ``functors between two homotopy theories form a homotopy theory'', or more precisely that the category of such models has a well-behaved internal hom-object.

**[And71]**D. W. Anderson,*Spectra and -sets*, Algebraic Topology (A. Liulevicius, ed.), Proceedings of symposia in pure mathematics, no. XXII, Amer. Math. Soc., 1971, pp. 23-30.MR**51:4232****[BK72]**A. K. Bousfield and D. M. Kan,*Homotopy limits, completions and localizations*, Lecture Notes in Mathematics 304, Springer-Verlag, 1972. MR**51:1825****[DHK]**W. G. Dwyer, P. Hirschhorn, and D. M. Kan,*General abstract homotopy theory*, in preperation.**[DK80]**W. G. Dwyer and D. M. Kan,*Function complexes in homotopical algebra*, Topology**19**(1980), 427-440. MR**81m:55018****[DK84a]**W. G. Dwyer and D. M. Kan,*A classification theorem for diagrams of simplicial sets*, Topology**23**(1984), 139-155. MR**86c:55010a****[DK84b]**W. G. Dwyer and D. M. Kan,*Realizing diagrams in the homotopy category by means of diagrams of simplicial sets*, Proc. Amer. Math. Soc.**91**(1984), 456-460. MR**86c:55010b****[DKS93]**W. G. Dwyer, D. M. Kan, and C. R. Stover,*An model category structure for pointed simplicial spaces*, Journal of Pure and Applied Algebra**90**(1993), 137-152. MR**95c:55027****[DS95]**W. G. Dwyer and J. Spalinski,*Homotopy theories and model categories*, Handbook of algebraic topology (I. M. James, ed.), Elsevier Science B. V., 1995, pp. 73-126. MR**96h:55014****[GJ]**P. G. Goerss and J. F. Jardine,*Simplicial homotopy theory*, Progress in Math., vol. 174, Birkhäuser, Basel, 1999. CMP**2000:02****[Hel88]**A. Heller,*Homotopy theories*, Memoirs of the Amer. Math. Soc., no. 383, (1988).MR**89b:55013****[Hir]**P. Hirschhorn,*Localization in model categories*, http://www-math.mit.edu/psh.**[Jar87]**J. F. Jardine,*Simplicial presheaves*, J. Pure Appl. Algebra**47**(1987), 35-87. MR**88j:18005****[Jar96]**J. F. Jardine,*Boolean localization, in practice*, Doc. Math.**1**(1996), No. 13, 245-275 (electronic). MR**97h:55023****[May67]**J. P. May,*Simplicial objects in algebraic topology*, University of Chicago Press, 1967. MR**36:5942****[Qui67]**D. G. Quillen,*Homotopical algebra*, Lecture Notes in Mathematics 43, Springer-Verlag, 1967. MR**36:6480****[Qui69]**D. G. Quillen,*Rational homotopy theory*, Annals of Math**90**(1969), 65-87. MR**41:2678****[Ree]**C. L. Reedy,*Homotopy theory of model categories*, unpublished manuscript.**[Seg74]**G. Segal,*Categories and cohomology theories*, Topology**13**(1974), 293-312. MR**50:5782****[Tho79]**R. W. Thomason,*Uniqueness of delooping machines*, Duke Math. J.**46**(1979), 217-252.MR**80e:55013**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2000):
55U35,
18G30

Retrieve articles in all journals with MSC (2000): 55U35, 18G30

Additional Information

**Charles Rezk**

Affiliation:
Department of Mathematics, Northwestern University, Evanston, Illinois 60208

Email:
rezk@math.nwu.edu

DOI:
https://doi.org/10.1090/S0002-9947-00-02653-2

Keywords:
Homotopy theory,
simplicial spaces,
localization,
closed model categories

Received by editor(s):
November 4, 1998

Published electronically:
June 20, 2000

Article copyright:
© Copyright 2000
American Mathematical Society