On the telescopic homotopy theory of spaces
Author:
A. K. Bousfield
Journal:
Trans. Amer. Math. Soc. 353 (2001), 2391-2426
MSC (2000):
Primary 55P60; Secondary 55N20, 55P42, 55P65, 55U35
DOI:
https://doi.org/10.1090/S0002-9947-00-02649-0
Published electronically:
July 18, 2000
MathSciNet review:
1814075
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: In telescopic homotopy theory, a space or spectrum
is approximated by a tower of localizations
,
, taking account of
-periodic homotopy groups for progressively higher
. For each
, we construct a telescopic Kuhn functor
carrying a space to a spectrum with the same
-periodic homotopy groups, and we construct a new functor
left adjoint to
. Using these functors, we show that the
th stable monocular homotopy category (comprising the
th fibers of stable telescopic towers) embeds as a retract of the
th unstable monocular homotopy category in two ways: one giving infinite loop spaces and the other giving ``infinite
-suspension spaces.'' We deduce that Ravenel's stable telescope conjectures are equivalent to unstable telescope conjectures. In particular, we show that the failure of Ravenel's
th stable telescope conjecture implies the existence of highly connected infinite loop spaces with trivial Johnson-Wilson
-homology but nontrivial
-periodic homotopy groups, showing a fundamental difference between the unstable chromatic and telescopic theories. As a stable chromatic application, we show that each spectrum is
-equivalent to a suspension spectrum. As an unstable chromatic application, we determine the
-localizations and
-localizations of infinite loop spaces in terms of
-localizations of spectra under suitable conditions. We also determine the
-localizations and
-localizations of arbitrary Postnikov
-spaces.
- [Ada] J. F. Adams, Stable Homotopy and Generalized Homology, University of Chicago Press, 1974. MR 53:6534
- [Bor] F. Borceux, Handbook of Categorical Algebra 2, Categories and Structures, Encyclopedia of Mathematics and its Applications, vol. 51, Cambridge University Press, 1994. MR 96g:18001b
- [Bou1] A.K. Bousfield, Boolean algebra of spectra, Comment. Math. Helv 54 (1979), 368-377; Correction, Comment Math. Helv. 58 (1983), 599-600. MR 81a:55015; MR 85h:55013
- [Bou2] -, The localization of spectra with respect to homology, Topology 18 (1979), 257-281. MR 80m:55006
- [Bou3] -, Cohomological localizations of spaces and spectra, preprint, 1979.
- [Bou4]
-,
-localizations and
-equivalences of infinite loop spaces, Proc. London Math. Soc. 44 (1982), 291-311. MR 83g:55008
- [Bou5] -, On homology equivalences and homological localizations of spaces, Amer. J. Math. 104 (1982), 1025-1042. MR 84g:55014
- [Bou6]
-, Uniqueness of infinite deloopings for
-theoretic spaces, Pacific J. Math. 129 (1987), 1-31. MR 89g:55017
- [Bou7] -, Localization and periodicity in unstable homotopy theory, J. Amer. Math. Soc. 7 (1994), 831-873. MR 95c:55010
- [Bou8] -, Unstable localization and periodicity, Algebraic Topology: New Trends in Localization and Periodicity, Progress in Mathematics, vol. 136, Birkhauser-Verlag, 1996, pp. 33-50. MR 98c:55014
- [Bou9] -, Homotopical localizations of spaces, Amer. J. Math. 119 (1997), 1321-1354. MR 98m:55009
- [Bou10]
-, On
-equivalences of spaces, Homotopy invariant algebraic structures: a conference in honor of J. Michael Boardman, Contemp. Math., vol. 239. CMP 2000:03
- [BF]
A.K. Bousfield and E.M. Friedlander, Homotopy theory of
-spaces, spectra, and bisimplicial sets, Lecture Notes in Math., vol. 658, Springer-Verlag, 1978, pp. 80-130. MR 80e:55021
- [BK] A.K. Bousfield and D.M. Kan, Homotopy Limits, Completions and Localizations, Lecture Notes in Math., vol. 304, Springer-Verlag, 1972. MR 51:1825
- [Dro] E. Dror Farjoun, Cellular spaces, null spaces and homotopy localizations, Lecture Notes in Math., vol. 1622, Springer-Verlag, 1996. MR 98f:55010
- [DDK] E. Dror Farjoun, W.G. Dwyer, and D.M. Kan, An arithmetic square for virtually nilpotent spaces, Illinois J. Math. 21 (1977), 242-254. MR 55:11246
- [DS] W.G. Dwyer and J. Spalinski, Homotopy theories and model categories, Handbook of Algebraic Topology, North-Holland, 1995, pp. 73-126. MR 96h:55014
- [GJ] P.G. Goerss and J.F. Jardine, Simplicial Homotopy Theory, Progress in Mathematics, vol. 174, Birkhauser-Verlag, 1999. CMP 2000:02
- [Hir] P.S. Hirschhorn, Localization in Model Categories, in preparation.
- [Hop] M.J. Hopkins, Global methods in homotopy theory, Homotopy Theory - Proceedings of the Durham Symposium 1985, London Math. Soc. Lecture Note Series, vol. 117, Cambridge Univ. Press, 1987, pp. 73-96. MR 89g:55022
- [HRW]
M.J. Hopkins, D.C. Ravenel, and W.S. Wilson, Morava Hopf algebras and spaces
equivalent to finite Postnikov systems, Stable and Unstable Homotopy, Fields Institute Communications, vol. 19, 1998, pp. 137-163. MR 99e:55005
- [HSm] M.J. Hopkins and J.H. Smith, Nilpotence and stable homotopy theory II, Ann. Math. 148 (1998), 1-49. MR 99h:55009
- [Hov] M. Hovey, Model Categories, Mathematical Surveys and Monographs, vol. 63, American Mathematical Society, 1998. MR 99h:55031
- [HP] M. Hovey and J.H. Palmieri, The structure of the Bousfield lattice, Homotopy invariant algebraic structures: a conference in honor of J. Michael Boardman, Contemp. Math., vol. 239. CMP 2000:03
- [HPS] M. Hovey, J.H. Palmieri, and N.P. Strickland, Axiomatic Stable Homotopy Theory, Mem. Amer. Math. Soc. (1997). MR 98a:55017
- [HSS] M. Hovey, B. Shipley, and J.H. Smith, Symmetric spectra, J. Amer. Math. Soc. 13 (2000), 149-208. CMP 2000:02
- [HSt]
M. Hovey and N.P. Strickland, Morava
-theories and localization, Mem. Amer. Math. Soc. 139 (1999). MR 99b:55017
- [Kas]
T. Kashiwabara, On Brown-Peterson cohomology of
(to appear).
- [Kuh1] N.J. Kuhn, Suspension spectra and homology equivalences, Trans. Amer. Math. Soc. 283 (1984), 303-313. MR 85g:55014
- [Kuh2]
-, Morava
-theories and infinite loop spaces, Lecture Notes in Math., vol. 1370, Springer-Verlag, 1989, pp. 243-257. MR 90d:55014
- [Mah]
M.E. Mahowald, The image of
in the EHP sequences, Ann. Math. 116 (1982), 65-112. MR 86d:55018
- [MS]
M. Mahowald and H. Sadofsky,
-telescopes and the Adams spectral sequence, Duke Math. J. 78 (1995), 101-129. MR 96h:55006
- [Mil1] H.R. Miller, On relations between Adams spectral sequences with an application to stable homotopy theory, J. Pure Appl. Algebra 20 (1981), 287-312. MR 82f:55029
- [Mil2] -, Finite localizations, Bol. Soc. Mat. Mexicana (Homenaje a Jose Adem) 37 (1992), 383-390. MR 96h:55009
- [Qui] D.G. Quillen, Homotopical Algebra, Lecture Notes in Math., vol. 43, Springer-Verlag, 1967. MR 36:6480
- [Rav1] D.C. Ravenel, Localization with respect to certain periodic homology theories, Amer. J. Math. 106 (1984), 351-414. MR 85k:55009
- [Rav2] -, Progress report on the telescope conjecture, London Math. Soc. Lecture Note Series 176, Adams Memorial Symposium on Algebraic Topology, Cambridge Univ. Press, 1992, pp. 1-21. MR 94h:55023
- [Rav3] -, Nilpotence and Periodicity in Stable Homotopy Theory, Ann. of Math. Studies 128, Princeton Univ. Press, 1992. MR 94b:55015
- [Rav4]
-, Life after the telescope conjecture, Algebraic
-Theory and Algebraic Topology (P.G. Goerss and J.F. Jardine, eds.), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 407, Kluwer, 1993, pp. 205-222. MR 96i:55016
- [RW]
D.C. Ravenel and W.S. Wilson, The Morava
-theories of Eilenberg-Mac Lane spaces and the Conner-Floyd conjecture, Amer. J. Math. 102 (1980), 691-748. MR 81i:55005
- [War] R.B. Warfield, Jr., Nilpotent Groups, Lecture Notes in Math., vol. 513, Springer-Verlag, 1976. MR 53:13413
Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 55P60, 55N20, 55P42, 55P65, 55U35
Retrieve articles in all journals with MSC (2000): 55P60, 55N20, 55P42, 55P65, 55U35
Additional Information
A. K. Bousfield
Affiliation:
Department of Mathematics, Statistics, and Computer Science (M/C 249), University of Illinois at Chicago, Chicago, Illinois 60607
Email:
bous@uic.edu
DOI:
https://doi.org/10.1090/S0002-9947-00-02649-0
Received by editor(s):
March 29, 1999
Published electronically:
July 18, 2000
Additional Notes:
Research partially supported by the National Science Foundation.
Article copyright:
© Copyright 2000
American Mathematical Society


