On the telescopic homotopy theory of spaces
HTML articles powered by AMS MathViewer
- by A. K. Bousfield
- Trans. Amer. Math. Soc. 353 (2001), 2391-2426
- DOI: https://doi.org/10.1090/S0002-9947-00-02649-0
- Published electronically: July 18, 2000
- PDF | Request permission
Abstract:
In telescopic homotopy theory, a space or spectrum $X$ is approximated by a tower of localizations $L^{f}_{n}X$, $n\ge 0$, taking account of $v_{n}$-periodic homotopy groups for progressively higher $n$. For each $n\ge 1$, we construct a telescopic Kuhn functor $\Phi _{n}$ carrying a space to a spectrum with the same $v_{n}$-periodic homotopy groups, and we construct a new functor $\Theta _{n}$ left adjoint to $\Phi _{n}$. Using these functors, we show that the $n$th stable monocular homotopy category (comprising the $n$th fibers of stable telescopic towers) embeds as a retract of the $n$th unstable monocular homotopy category in two ways: one giving infinite loop spaces and the other giving “infinite $L^{f}_{n}$-suspension spaces.” We deduce that Ravenel’s stable telescope conjectures are equivalent to unstable telescope conjectures. In particular, we show that the failure of Ravenel’s $n$th stable telescope conjecture implies the existence of highly connected infinite loop spaces with trivial Johnson-Wilson $E(n)_{*}$-homology but nontrivial $v_{n}$-periodic homotopy groups, showing a fundamental difference between the unstable chromatic and telescopic theories. As a stable chromatic application, we show that each spectrum is $K(n)$-equivalent to a suspension spectrum. As an unstable chromatic application, we determine the $E(n)_{*}$-localizations and $K(n)_{*}$-localizations of infinite loop spaces in terms of $E(n)_{*}$-localizations of spectra under suitable conditions. We also determine the $E(n)_{*}$-localizations and $K(n)_{*}$-localizations of arbitrary Postnikov $H$-spaces.References
- J. F. Adams, Stable homotopy and generalised homology, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, Ill.-London, 1974. MR 0402720
- Francis Borceux, Handbook of categorical algebra. 1, Encyclopedia of Mathematics and its Applications, vol. 50, Cambridge University Press, Cambridge, 1994. Basic category theory. MR 1291599
- I. M. Sheffer, Some properties of polynomial sets of type zero, Duke Math. J. 5 (1939), 590–622. MR 81, DOI 10.1215/S0012-7094-39-00549-1
- A. K. Bousfield, The localization of spectra with respect to homology, Topology 18 (1979), no. 4, 257–281. MR 551009, DOI 10.1016/0040-9383(79)90018-1
- —, Cohomological localizations of spaces and spectra, preprint, 1979.
- A. K. Bousfield, $K$-localizations and $K$-equivalences of infinite loop spaces, Proc. London Math. Soc. (3) 44 (1982), no. 2, 291–311. MR 647434, DOI 10.1112/plms/s3-44.2.291
- A. K. Bousfield, On homology equivalences and homological localizations of spaces, Amer. J. Math. 104 (1982), no. 5, 1025–1042. MR 675308, DOI 10.2307/2374082
- A. K. Bousfield, Uniqueness of infinite deloopings for $K$-theoretic spaces, Pacific J. Math. 129 (1987), no. 1, 1–31. MR 901254, DOI 10.2140/pjm.1987.129.1
- A. K. Bousfield, Localization and periodicity in unstable homotopy theory, J. Amer. Math. Soc. 7 (1994), no. 4, 831–873. MR 1257059, DOI 10.1090/S0894-0347-1994-1257059-7
- A. K. Bousfield, Unstable localization and periodicity, Algebraic topology: new trends in localization and periodicity (Sant Feliu de Guíxols, 1994) Progr. Math., vol. 136, Birkhäuser, Basel, 1996, pp. 33–50. MR 1397720
- A. K. Bousfield, Homotopical localizations of spaces, Amer. J. Math. 119 (1997), no. 6, 1321–1354. MR 1481817, DOI 10.1353/ajm.1997.0036
- —, On $K(n)$-equivalences of spaces, Homotopy invariant algebraic structures: a conference in honor of J. Michael Boardman, Contemp. Math., vol. 239.
- A. K. Bousfield and E. M. Friedlander, Homotopy theory of $\Gamma$-spaces, spectra, and bisimplicial sets, Geometric applications of homotopy theory (Proc. Conf., Evanston, Ill., 1977) Lecture Notes in Math., vol. 658, Springer, Berlin, 1978, pp. 80–130. MR 513569
- A. K. Bousfield and D. M. Kan, Homotopy limits, completions and localizations, Lecture Notes in Mathematics, Vol. 304, Springer-Verlag, Berlin-New York, 1972. MR 0365573, DOI 10.1007/978-3-540-38117-4
- Emmanuel Dror Farjoun, Cellular spaces, null spaces and homotopy localization, Lecture Notes in Mathematics, vol. 1622, Springer-Verlag, Berlin, 1996. MR 1392221, DOI 10.1007/BFb0094429
- E. Dror, W. G. Dwyer, and D. M. Kan, An arithmetic square for virtually nilpotent spaces, Illinois J. Math. 21 (1977), no. 2, 242–254. MR 438330, DOI 10.1215/ijm/1256049410
- W. G. Dwyer and J. Spaliński, Homotopy theories and model categories, Handbook of algebraic topology, North-Holland, Amsterdam, 1995, pp. 73–126. MR 1361887, DOI 10.1016/B978-044481779-2/50003-1
- P.G. Goerss and J.F. Jardine, Simplicial Homotopy Theory, Progress in Mathematics, vol. 174, Birkhauser-Verlag, 1999.
- P.S. Hirschhorn, Localization in Model Categories, in preparation.
- Michael J. Hopkins, Global methods in homotopy theory, Homotopy theory (Durham, 1985) London Math. Soc. Lecture Note Ser., vol. 117, Cambridge Univ. Press, Cambridge, 1987, pp. 73–96. MR 932260
- Michael J. Hopkins, Douglas C. Ravenel, and W. Stephen Wilson, Morava Hopf algebras and spaces $K(n)$ equivalent to finite Postnikov systems, Stable and unstable homotopy (Toronto, ON, 1996) Fields Inst. Commun., vol. 19, Amer. Math. Soc., Providence, RI, 1998, pp. 137–163. MR 1622344
- Michael J. Hopkins and Jeffrey H. Smith, Nilpotence and stable homotopy theory. II, Ann. of Math. (2) 148 (1998), no. 1, 1–49. MR 1652975, DOI 10.2307/120991
- Mark Hovey, Model categories, Mathematical Surveys and Monographs, vol. 63, American Mathematical Society, Providence, RI, 1999. MR 1650134
- M. Hovey and J.H. Palmieri, The structure of the Bousfield lattice, Homotopy invariant algebraic structures: a conference in honor of J. Michael Boardman, Contemp. Math., vol. 239.
- Mark Hovey, John H. Palmieri, and Neil P. Strickland, Axiomatic stable homotopy theory, Mem. Amer. Math. Soc. 128 (1997), no. 610, x+114. MR 1388895, DOI 10.1090/memo/0610
- M. Hovey, B. Shipley, and J.H. Smith, Symmetric spectra, J. Amer. Math. Soc. 13 (2000), 149–208.
- Mark Hovey and Neil P. Strickland, Morava $K$-theories and localisation, Mem. Amer. Math. Soc. 139 (1999), no. 666, viii+100. MR 1601906, DOI 10.1090/memo/0666
- T. Kashiwabara, On Brown-Peterson cohomology of $QX$ (to appear).
- Nicholas J. Kuhn, Suspension spectra and homology equivalences, Trans. Amer. Math. Soc. 283 (1984), no. 1, 303–313. MR 735424, DOI 10.1090/S0002-9947-1984-0735424-1
- Nicholas J. Kuhn, Morava $K$-theories and infinite loop spaces, Algebraic topology (Arcata, CA, 1986) Lecture Notes in Math., vol. 1370, Springer, Berlin, 1989, pp. 243–257. MR 1000381, DOI 10.1007/BFb0085232
- Mark Mahowald, Correction to: “The image of $J$ in the $EHP$ sequence” [Ann. of Math. (2) 116 (1982), 65–112; MR0662118 (83i:55019)], Ann. of Math. (2) 120 (1984), no. 2, 399–400. MR 763912, DOI 10.2307/2006947
- Mark Mahowald and Hal Sadofsky, $v_n$ telescopes and the Adams spectral sequence, Duke Math. J. 78 (1995), no. 1, 101–129. MR 1328754, DOI 10.1215/S0012-7094-95-07806-5
- Haynes R. Miller, On relations between Adams spectral sequences, with an application to the stable homotopy of a Moore space, J. Pure Appl. Algebra 20 (1981), no. 3, 287–312. MR 604321, DOI 10.1016/0022-4049(81)90064-5
- Haynes Miller, Finite localizations, Bol. Soc. Mat. Mexicana (2) 37 (1992), no. 1-2, 383–389. Papers in honor of José Adem (Spanish). MR 1317588
- Daniel G. Quillen, Homotopical algebra, Lecture Notes in Mathematics, No. 43, Springer-Verlag, Berlin-New York, 1967. MR 0223432, DOI 10.1007/BFb0097438
- Douglas C. Ravenel, Localization with respect to certain periodic homology theories, Amer. J. Math. 106 (1984), no. 2, 351–414. MR 737778, DOI 10.2307/2374308
- Douglas C. Ravenel, Progress report on the telescope conjecture, Adams Memorial Symposium on Algebraic Topology, 2 (Manchester, 1990) London Math. Soc. Lecture Note Ser., vol. 176, Cambridge Univ. Press, Cambridge, 1992, pp. 1–21. MR 1232195, DOI 10.1017/CBO9780511526312.007
- Douglas C. Ravenel, Nilpotence and periodicity in stable homotopy theory, Annals of Mathematics Studies, vol. 128, Princeton University Press, Princeton, NJ, 1992. Appendix C by Jeff Smith. MR 1192553
- Douglas C. Ravenel, Life after the telescope conjecture, Algebraic $K$-theory and algebraic topology (Lake Louise, AB, 1991) NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., vol. 407, Kluwer Acad. Publ., Dordrecht, 1993, pp. 205–222. MR 1367299, DOI 10.1007/978-94-017-0695-7_{1}0
- Douglas C. Ravenel and W. Stephen Wilson, The Morava $K$-theories of Eilenberg-Mac Lane spaces and the Conner-Floyd conjecture, Amer. J. Math. 102 (1980), no. 4, 691–748. MR 584466, DOI 10.2307/2374093
- Robert B. Warfield Jr., Nilpotent groups, Lecture Notes in Mathematics, Vol. 513, Springer-Verlag, Berlin-New York, 1976. MR 0409661, DOI 10.1007/BFb0080152
Bibliographic Information
- A. K. Bousfield
- Affiliation: Department of Mathematics, Statistics, and Computer Science (M/C 249), University of Illinois at Chicago, Chicago, Illinois 60607
- MR Author ID: 198766
- Email: bous@uic.edu
- Received by editor(s): March 29, 1999
- Published electronically: July 18, 2000
- Additional Notes: Research partially supported by the National Science Foundation.
- © Copyright 2000 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 353 (2001), 2391-2426
- MSC (2000): Primary 55P60; Secondary 55N20, 55P42, 55P65, 55U35
- DOI: https://doi.org/10.1090/S0002-9947-00-02649-0
- MathSciNet review: 1814075