Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Non-special, non-canal isothermic tori with spherical lines of curvature

Author: Holly Bernstein
Journal: Trans. Amer. Math. Soc. 353 (2001), 2245-2274
MSC (1991): Primary 53A05; Secondary 51B10, 58G37
Published electronically: November 28, 2000
MathSciNet review: 1814069
Full-text PDF

Abstract | References | Similar Articles | Additional Information


This article examines isothermic surfaces smoothly immersed in Möbius space. It finds explicit examples of non-special, non-canal isothermic tori with spherical lines of curvature in two systems by analyzing Darboux transforms of Dupin tori. In addition, it characterizes the property of spherical lines of curvature in terms of differential equations on the Calapso potential of the isothermic immersion, and investigates the effect of classical transformations on this property.

References [Enhancements On Off] (What's this?)

  • [Abr87] U. Abresch, Constant mean curvature tori in terms of elliptic functions, Journal für die Reine und Angewandte Mathematik 374 (1987), 169-192. MR 88e:53006
  • [Bob91] A. Bobenko, All constant mean curvature tori in $\ensuremath{\mathbb{R} } ^3, S^3, \mathbb{H} ^3$ in terms of theta functions, Math. Ann. 290 (1991), 209-245. MR 92h:53072
  • [Bry84] R. Bryant, A duality theorem for Willmore surfaces, Journal of Differential Geometry 20 (1984), 23-53. MR 86j:58029
  • [Cal03] P. Calapso, Sulle superficie a linea di curvatura isoterme, Rend. Circ. Mat. Palermo 17 (1903), 275-286.
  • [Cal15] P. Calapso, Sulle transformazioni delle superficie isoterme, Annali di Mat. 24 (1915), 11-48.
  • [CM98] D. Carfíand E. Musso, T-transformations of Willmore isothermic surfaces, Proceedings of Conference in Messina: Congresso Internazionali di Geometria Differenzialee in onore di Pasquale Calapso (Messina), Oct 1998.
  • [Dar99] G. Darboux, Sur les surfaces isothermiques, C. R. Acad. Sci. Paris 128 (1899), 1299-1305.
  • [Dar72] G. Darboux, Leçons sur la théorie générale des surfaces et les applications géométriques du calcul infinitésimal, vols. II, IV, Chelsea Publishing Company, New York, 1972. MR 53:80; MR 53:82
  • [Hop83] H. Hopf, Differential geometry in the large, Springer-Verlag, New York, 1983, Lecture Notes in Mathematics, 1000. MR 85b:53001
  • [KPP98] G. Kamberov, P. Pedit, and U. Pinkall, Bonnet pairs and isothermic surfaces, Duke Mathemathics Journal 92 (1998), 637-644. MR 99h:53009
  • [LT81] B. Lawson and R. Tribuzy, On the mean curvature function for compact surfaces, Journal of Differential Geometry 16 (1981), 179-183. MR 83e:53060
  • [MN97] E. Musso and L. Nicolodi, Bäcklund's theorem for the Calapso equation, Tech. report, CNR, 1997.
  • [Mus95] E. Musso, Deformazione di superfici nello spazio di Möbius, Rend. Istit. Mat. Univ. Trieste 27 (1995), 25-45. MR 97i:53013
  • [Mus97] E. Musso, Möbius geometry, Unpublished notes, 1997.
  • [Nic96] L. Nicolodi, Preliminaries about Möbius geometry, Unpublished notes, 1996.
  • [PS89] U. Pinkall and I. Sterling, On the classification of constant mean curvature tori, Ann. of Math. 130 (1989), 407-451. MR 91b:53009
  • [Sul81] R. Sulanke, Submanifolds of the Möbius space, II: Frenet formulas and curves of constant curvature, Math. Nachr. 100 (1981), 235-247. MR 83d:53046
  • [Tri80] R. Tribuzy, A characterization of tori with constant mean curvature in a space form, Bol. Soc. Brasil. Mat. 11 (1980), 259-274. MR 84d:53066
  • [Wal87] R. Walter, Explicit examples to the H-problem of Heinz Hopf, Geometriae Dedicata 23 (1987), 187-213. MR 88i:53015a
  • [Wal89] R. Walter, Constant mean curvature tori with spherical curvature lines in non-euclidean geometry, Manuscripta Mathematica 63 (1989), no. 3, 343-363. MR 90a:53016
  • [Wen86] H. Wente, Counterexample to a conjecture of H. Hopf, Pacific Jour. of Math. 121 (1986), 193-243. MR 87d:53013

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 53A05, 51B10, 58G37

Retrieve articles in all journals with MSC (1991): 53A05, 51B10, 58G37

Additional Information

Holly Bernstein
Affiliation: Department of Mathematics, Washington University in St. Louis, Campus Box 1146, One Brookings Drive, St. Louis, Missouri 63130

Keywords: Isothermic, tori, Darboux transform, M\"obius geometry, moving frames, umbilic loci
Received by editor(s): August 15, 1999
Received by editor(s) in revised form: March 10, 2000
Published electronically: November 28, 2000
Article copyright: © Copyright 2000 American Mathematical Society