Multiplier ideals of monomial ideals
HTML articles powered by AMS MathViewer
- by J. A. Howald
- Trans. Amer. Math. Soc. 353 (2001), 2665-2671
- DOI: https://doi.org/10.1090/S0002-9947-01-02720-9
- Published electronically: March 2, 2001
- PDF | Request permission
Abstract:
In this note we discuss a simple algebraic calculation of the multiplier ideal associated to a monomial ideal in affine $n$-space. We indicate how this result allows one to compute not only the multiplier ideal but also the log canonical threshold of an ideal in terms of its Newton polygon.References
- Urban Angehrn and Yum Tong Siu, Effective freeness and point separation for adjoint bundles, Invent. Math. 122 (1995), no. 2, 291–308. MR 1358978, DOI 10.1007/BF01231446
- V. I. Arnol′d, S. M. Guseĭn-Zade, and A. N. Varchenko, Singularities of differentiable maps. Vol. I, Monographs in Mathematics, vol. 82, Birkhäuser Boston, Inc., Boston, MA, 1985. The classification of critical points, caustics and wave fronts; Translated from the Russian by Ian Porteous and Mark Reynolds. MR 777682, DOI 10.1007/978-1-4612-5154-5
- Jean-Pierre Demailly, $L^2$ vanishing theorems for positive line bundles and adjunction theory, Transcendental methods in algebraic geometry (Cetraro, 1994) Lecture Notes in Math., vol. 1646, Springer, Berlin, 1996, pp. 1–97. MR 1603616, DOI 10.1007/BFb0094302
- Jean-Pierre Demailly and János Kollár. Semi-continuity of complex singularity exponents and Kähler-Einstein metrics on Fano orbifolds. Mathematics E-Print Archive, October 1999.
- Lawrence Ein, Multiplier ideals, vanishing theorems and applications, Algebraic geometry—Santa Cruz 1995, Proc. Sympos. Pure Math., vol. 62, Amer. Math. Soc., Providence, RI, 1997, pp. 203–219. MR 1492524, DOI 10.1090/pspum/062.1/1492524
- Lawrence Ein and Robert Lazarsfeld, A geometric effective Nullstellensatz, Invent. Math. 137 (1999), no. 2, 427–448. MR 1705839, DOI 10.1007/s002220050332
- Topics related to cohomologies of local rings, Kyoto University, Research Institute for Mathematical Sciences, Kyoto, 1985 (Japanese). Sūrikaisekikenkyūsho K\B{o}kyūroku No. 543 (1985). MR 836166
- William Fulton, Introduction to toric varieties, Annals of Mathematics Studies, vol. 131, Princeton University Press, Princeton, NJ, 1993. The William H. Roever Lectures in Geometry. MR 1234037, DOI 10.1515/9781400882526
- János Kollár, Singularities of pairs, Algebraic geometry—Santa Cruz 1995, Proc. Sympos. Pure Math., vol. 62, Amer. Math. Soc., Providence, RI, 1997, pp. 221–287. MR 1492525, DOI 10.1090/pspum/062.1/1492525
- Maclagan. Antichains of monomial ideals are finite. Mathematics E-Print Archive, October 1999.
- V. V. Shokurov, Three-dimensional log perestroikas, Izv. Ross. Akad. Nauk Ser. Mat. 56 (1992), no. 1, 105–203 (Russian); English transl., Russian Acad. Sci. Izv. Math. 40 (1993), no. 1, 95–202. MR 1162635, DOI 10.1070/IM1993v040n01ABEH001862
- Yum-Tong Siu, Invariance of plurigenera, Invent. Math. 134 (1998), no. 3, 661–673. MR 1660941, DOI 10.1007/s002220050276
Bibliographic Information
- J. A. Howald
- Affiliation: Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48104
- Email: jahowald@math.lsa.umich.edu
- Received by editor(s): April 10, 2000
- Published electronically: March 2, 2001
- Additional Notes: I would like to thank Robert Lazarsfeld for suggesting this problem, and for many valuable discussions.
- © Copyright 2001 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 353 (2001), 2665-2671
- MSC (2000): Primary 14Q99; Secondary 14M25
- DOI: https://doi.org/10.1090/S0002-9947-01-02720-9
- MathSciNet review: 1828466