The Siegel modular variety of degree two and level three
HTML articles powered by AMS MathViewer
- by J. William Hoffman and Steven H. Weintraub
- Trans. Amer. Math. Soc. 353 (2001), 3267-3305
- DOI: https://doi.org/10.1090/S0002-9947-00-02675-1
- Published electronically: September 21, 2000
- PDF | Request permission
Abstract:
Let $\mathcal {A}_{2}(n)$ denote the quotient of the Siegel upper half space of degree two by $\Gamma _{2}(n)$, the principal congruence subgroup of level $n$ in $\mathbf {Sp}(4,\mathbf {Z})$. $\mathcal {A}_{2}(n)$ is the moduli space of principally polarized abelian varieties of dimension two with a level $n$ structure, and has a compactification $\mathcal {A}_{2}(n)^{\ast }$ first constructed by Igusa. When $n\ge 3$ this is a smooth projective algebraic variety of dimension three. In this work we analyze the topology of $\mathcal {A}_{2}(3)^{\ast }$ and the open subset $\mathcal {A}_{2}(3)$. In this way we obtain the rational cohomology ring of $\Gamma _{2}(3)$. The key is that one has an explicit description of $\mathcal {A}_{2}(3)^{\ast }$: it is the resolution of the 45 nodes on a projective quartic threefold whose equation was first written down about 100 years ago by H. Burkhardt. We are able to compute the zeta function of this variety reduced modulo certain primes.References
- M. Artin and D. Mumford, Some elementary examples of unirational varieties which are not rational, Proc. London Math. Soc. (3) 25 (1972), 75–95. MR 321934, DOI 10.1112/plms/s3-25.1.75
- A. Ash, D. Mumford, M. Rapoport, and Y. Tai, Smooth compactification of locally symmetric varieties, Lie Groups: History, Frontiers and Applications, Vol. IV, Math Sci Press, Brookline, Mass., 1975. MR 0457437
- W. L. Baily Jr. and A. Borel, Compactification of arithmetic quotients of bounded symmetric domains, Ann. of Math. (2) 84 (1966), 442–528. MR 216035, DOI 10.2307/1970457
- A. R. Collar, On the reciprocation of certain matrices, Proc. Roy. Soc. Edinburgh 59 (1939), 195–206. MR 8
- Antoni Zygmund, Sur un théorèm de M. Fejér, Bull. Sém. Math. Univ. Wilno 2 (1939), 3–12 (French). MR 52
- I. Maruşciac and Gh. Nadiu, .An interpretation of the algorithms with scheme-graph in connection with Turing machines and algorithms of Černjavskiī type, Stud. Cerc. Mat. 20 (1968), 991–1012 (Romanian, with French summary). MR 258539
- Antoni Zygmund, Sur un théorèm de M. Fejér, Bull. Sém. Math. Univ. Wilno 2 (1939), 3–12 (French). MR 52
- Armand Borel and Nolan R. Wallach, Continuous cohomology, discrete subgroups, and representations of reductive groups, Annals of Mathematics Studies, No. 94, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1980. MR 554917
- Burkhardt, H. Beiträge zur Theorie der hyperelliptischen Sigmafunctionen, Math. Ann. 32 (1888) 381 - 442; Grundzüge einer allgemeinen Systematik der hyperelliptischen Funktionen I. Ordnung. Nach Vorlesung von F. Klein, Math. Ann. 35, 1889, 198 - 296; Untersuchungen aus dem Gebiet der hyperelliptischen Modulfunctionen (I), Math. Ann. 36 (1890) 371 - 434; (II), Math. Ann. 38 (1891) 161 - 224; (III), Math. Ann. 41 (1893) 313 - 343; Ueber einen fundamentalen Satz der Lehre von den endlichen Gruppen linearer Substitutionen, Math. Ann. 41 (1893) 309 - 312.
- J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson, $\Bbb {ATLAS}$ of finite groups, Oxford University Press, Eynsham, 1985. Maximal subgroups and ordinary characters for simple groups; With computational assistance from J. G. Thackray. MR 827219
- A. J. de Jong, N. I. Shepherd-Barron, and A. Van de Ven, On the Burkhardt quartic, Math. Ann. 286 (1990), no. 1-3, 309–328. MR 1032936, DOI 10.1007/BF01453578
- Leo F. Epstein, A function related to the series for $e^{e^x}$, J. Math. Phys. Mass. Inst. Tech. 18 (1939), 153–173. MR 58, DOI 10.1002/sapm1939181153
- A. A. Beĭlinson, J. Bernstein, and P. Deligne, Faisceaux pervers, Analysis and topology on singular spaces, I (Luminy, 1981) Astérisque, vol. 100, Soc. Math. France, Paris, 1982, pp. 5–171 (French). MR 751966
- François Digne and Jean Michel, Representations of finite groups of Lie type, London Mathematical Society Student Texts, vol. 21, Cambridge University Press, Cambridge, 1991. MR 1118841, DOI 10.1017/CBO9781139172417
- Alan H. Durfee, Intersection homology Betti numbers, Proc. Amer. Math. Soc. 123 (1995), no. 4, 989–993. MR 1233968, DOI 10.1090/S0002-9939-1995-1233968-2
- Gerd Faltings and Ching-Li Chai, Degeneration of abelian varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 22, Springer-Verlag, Berlin, 1990. With an appendix by David Mumford. MR 1083353, DOI 10.1007/978-3-662-02632-8
- Franke, H. Hilbert modulflächen in Siegelscher modulvarietäten, Bonner Math. Schrft.
- G. Harder, A Gauss-Bonnet formula for discrete arithmetically defined groups, Ann. Sci. École Norm. Sup. (4) 4 (1971), 409–455. MR 309145
- Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 0463157
- Holger Heidrich and Friedrich W. Knöller, Über die Fundamentalgruppen Siegelscher Modulvarietäten vom Grade $2$, Manuscripta Math. 57 (1987), no. 3, 249–262 (German, with English summary). MR 873467, DOI 10.1007/BF01437483
- Hoffman, J. W. The zeta function of Burkhardt’s quartic, (1995) .
- J. William Hoffman and Steven H. Weintraub, Cohomology of the Siegel modular group of degree two and level four, Mem. Amer. Math. Soc. 133 (1998), no. 631, ix, 59–75. MR 1459400
- Hoffman J. W. and Weintraub, S. H. Four-dimensional symplectic geometry over the field with three elements, and a moduli space of abelian surfaces, in preparation.
- Hoffman J. W. and Weintraub, S. H. Cohomology of the boundary of Siegel modular varieties of degree two, with applications, in preparation.
- R. B. Howlett and G. I. Lehrer, Induced cuspidal representations and generalised Hecke rings, Invent. Math. 58 (1980), no. 1, 37–64. MR 570873, DOI 10.1007/BF01402273
- Klaus Hulek, Constantin Kahn, and Steven H. Weintraub, Moduli spaces of abelian surfaces: compactification, degenerations, and theta functions, De Gruyter Expositions in Mathematics, vol. 12, Walter de Gruyter & Co., Berlin, 1993. MR 1257185, DOI 10.1515/9783110891928
- Bruce Hunt, The geometry of some special arithmetic quotients, Lecture Notes in Mathematics, vol. 1637, Springer-Verlag, Berlin, 1996. MR 1438547, DOI 10.1007/BFb0094399
- Bruce Hunt and Steven H. Weintraub, Janus-like algebraic varieties, J. Differential Geom. 39 (1994), no. 3, 509–557. MR 1274130
- Jun-ichi Igusa, A desingularization problem in the theory of Siegel modular functions, Math. Ann. 168 (1967), 228–260. MR 218352, DOI 10.1007/BF01361555
- D. A. Každan, On the connection of the dual space of a group with the structure of its closed subgroups, Funkcional. Anal. i Priložen. 1 (1967), 71–74 (Russian). MR 0209390
- Robert E. Kottwitz, Points on some Shimura varieties over finite fields, J. Amer. Math. Soc. 5 (1992), no. 2, 373–444. MR 1124982, DOI 10.1090/S0894-0347-1992-1124982-1
- Ronnie Lee and Steven H. Weintraub, Cohomology of a Siegel modular variety of degree $2$, Group actions on manifolds (Boulder, Colo., 1983) Contemp. Math., vol. 36, Amer. Math. Soc., Providence, RI, 1985, pp. 433–488. MR 780976, DOI 10.1090/conm/036/780976
- Ronnie Lee and Steven H. Weintraub, Cohomology of $\textrm {Sp}_4(\textbf {Z})$ and related groups and spaces, Topology 24 (1985), no. 4, 391–410. MR 816521, DOI 10.1016/0040-9383(85)90011-4
- Ronnie Lee and Steven H. Weintraub, Topology of the Siegel spaces of degree two and their compactifications, Proceedings of the 1986 topology conference (Lafayette, La., 1986), 1986, pp. 115–175. MR 898016
- Ronnie Lee and Steven H. Weintraub, The Siegel modular variety of degree two and level four: a report, Arithmetic of complex manifolds (Erlangen, 1988) Lecture Notes in Math., vol. 1399, Springer, Berlin, 1989, pp. 89–102. MR 1034258, DOI 10.1007/BFb0095970
- Ronnie Lee and Steven H. Weintraub, Invariants of branched covering from the work of Serre and Mumford, Forum Math. 8 (1996), no. 5, 535–568. MR 1404802, DOI 10.1515/form.1996.8.535
- Eduard Looijenga, $L^2$-cohomology of locally symmetric varieties, Compositio Math. 67 (1988), no. 1, 3–20. MR 949269
- George Lusztig, Representations of finite Chevalley groups, CBMS Regional Conference Series in Mathematics, vol. 39, American Mathematical Society, Providence, R.I., 1978. Expository lectures from the CBMS Regional Conference held at Madison, Wis., August 8–12, 1977. MR 518617
- Robert MacPherson and Mark McConnell, Explicit reduction theory for Siegel modular threefolds, Invent. Math. 111 (1993), no. 3, 575–625. MR 1202137, DOI 10.1007/BF01231300
- Maschke, H. Über die lineare Gruppe der Borchardt’schen Moduln, Math. Ann. 31 (1887), 496 - 515; Aufstellung des vollen Formensystems einer quaternären Gruppe von 51840 lineare Substitutionen, Math. Ann. 33 (1889), 317 - 344.
- Yukihiko Namikawa, Toroidal compactification of Siegel spaces, Lecture Notes in Mathematics, vol. 812, Springer, Berlin, 1980. MR 584625
- Takayuki Oda and Joachim Schwermer, Mixed Hodge structures and automorphic forms for Siegel modular varieties of degree two, Math. Ann. 286 (1990), no. 1-3, 481–509. MR 1032942, DOI 10.1007/BF01453584
- Takeo Ohsawa, On the $L^2$ cohomology of complex spaces, Math. Z. 209 (1992), no. 4, 519–530. MR 1156434, DOI 10.1007/BF02570851
- Morihiko Saito, Mixed Hodge modules and applications, Proceedings of the International Congress of Mathematicians, Vol. I, II (Kyoto, 1990) Math. Soc. Japan, Tokyo, 1991, pp. 725–734. MR 1159259
- G. K. Sankaran, Fundamental group of locally symmetric varieties, Manuscripta Math. 90 (1996), no. 1, 39–48. MR 1387753, DOI 10.1007/BF02568292
- Leslie Saper and Mark Stern, $L_2$-cohomology of arithmetic varieties, Proc. Nat. Acad. Sci. U.S.A. 84 (1987), no. 16, 5516–5519. MR 903789, DOI 10.1073/pnas.84.16.5516
- Cahit Arf, Untersuchungen über reinverzweigte Erweiterungen diskret bewerteter perfekter Körper, J. Reine Angew. Math. 181 (1939), 1–44 (German). MR 18, DOI 10.1515/crll.1940.181.1
- Max Zorn, Continuous groups and Schwarz’ lemma, Trans. Amer. Math. Soc. 46 (1939), 1–22. MR 53, DOI 10.1090/S0002-9947-1939-0000053-7
- Jean-Pierre Serre, Motifs, Astérisque 198-200 (1991), 11, 333–349 (1992) (French, with English summary). Journées Arithmétiques, 1989 (Luminy, 1989). MR 1144336
- Joachim Schwermer, On arithmetic quotients of the Siegel upper half space of degree two, Compositio Math. 58 (1986), no. 2, 233–258. MR 844411
- Tetsuji Shioda, On elliptic modular surfaces, J. Math. Soc. Japan 24 (1972), 20–59. MR 429918, DOI 10.2969/jmsj/02410020
- Carl Ludwig Siegel, Symplectic geometry, Academic Press, New York-London, 1964. MR 0164063
- Bhama Srinivasan, The characters of the finite symplectic group $\textrm {Sp}(4,\,q)$, Trans. Amer. Math. Soc. 131 (1968), 488–525. MR 220845, DOI 10.1090/S0002-9947-1968-0220845-7
- Gerard van der Geer, Note on abelian schemes of level three, Math. Ann. 278 (1987), no. 1-4, 401–408. MR 909234, DOI 10.1007/BF01458077
- Weintraub, S. H. Letter to Bruce Hunt, Aug. 16, 1987.
- Rainer Weissauer, Differentialformen zu Untergruppen der Siegelschen Modulgruppe zweiten Grades, J. Reine Angew. Math. 391 (1988), 100–156 (German). MR 961166, DOI 10.1515/crll.1988.391.100
- Rainer Weissauer, On the cohomology of Siegel modular threefolds, Arithmetic of complex manifolds (Erlangen, 1988) Lecture Notes in Math., vol. 1399, Springer, Berlin, 1989, pp. 155–171. MR 1034263, DOI 10.1007/BFb0095975
- R. Weissauer, The Picard group of Siegel modular threefolds, J. Reine Angew. Math. 430 (1992), 179–211. With an erratum: “Differential forms attached to subgroups of the Siegel modular group of degree two” [J. Reine Angew. Math. 391 (1988), 100–156; MR0961166 (89i:32074)] by the author. MR 1172913, DOI 10.1515/crll.1992.430.179
- Tadashi Yamazaki, On Siegel modular forms of degree two, Amer. J. Math. 98 (1976), no. 1, 39–53. MR 404717, DOI 10.2307/2373612
Bibliographic Information
- J. William Hoffman
- Affiliation: Department of Mathematics, Louisiana State University, Baton Rouge, Louisiana 70803
- Email: hoffman@math.lsu.edu
- Steven H. Weintraub
- Affiliation: Department of Mathematics, Louisiana State University, Baton Rouge, Louisiana 70803
- MR Author ID: 181515
- ORCID: 0000-0002-3290-363X
- Email: weintr@math.lsu.edu
- Received by editor(s): March 29, 1999
- Published electronically: September 21, 2000
- Additional Notes: The first named author would like to thank Meijo University in Nagoya, Japan, for its generous hospitality. Part of this work was done while visiting there.
- © Copyright 2000 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 353 (2001), 3267-3305
- MSC (2000): Primary 11F75; Secondary 11F46, 14G35, 14J30
- DOI: https://doi.org/10.1090/S0002-9947-00-02675-1
- MathSciNet review: 1828606