Compactifying the relative Jacobian over families of reduced curves
HTML articles powered by AMS MathViewer
- by Eduardo Esteves
- Trans. Amer. Math. Soc. 353 (2001), 3045-3095
- DOI: https://doi.org/10.1090/S0002-9947-01-02746-5
- Published electronically: January 18, 2001
- PDF | Request permission
Abstract:
We construct natural relative compactifications for the relative Jacobian over a family $X/S$ of reduced curves. In contrast with all the available compactifications so far, ours admit a Poincaré sheaf after an étale base change. Our method consists of studying the étale sheaf $F$ of simple, torsion-free, rank-1 sheaves on $X/S$, and showing that certain open subsheaves of $F$ have the completeness property. Strictly speaking, the functor $F$ is only representable by an algebraic space, but we show that $F$ is representable by a scheme after an étale base change. Finally, we use theta functions originating from vector bundles to compare our new compactifications with the available ones.References
- V. Alexeev, Compactified Jacobians, Available at http://xxx.lanl.gov/abs/alg-geom/9608012, August, 1996.
- Allen B. Altman, Anthony Iarrobino, and Steven L. Kleiman, Irreducibility of the compactified Jacobian, Real and complex singularities (Proc. Ninth Nordic Summer School/NAVF Sympos. Math., Oslo, 1976) Sijthoff and Noordhoff, Alphen aan den Rijn, 1977, pp. 1–12. MR 0498546
- Allen B. Altman and Steven L. Kleiman, Compactifying the Picard scheme, Adv. in Math. 35 (1980), no. 1, 50–112. MR 555258, DOI 10.1016/0001-8708(80)90043-2
- E. Arbarello, M. Cornalba, P. A. Griffiths, and J. Harris, Geometry of algebraic curves. Vol. I, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 267, Springer-Verlag, New York, 1985. MR 770932, DOI 10.1007/978-1-4757-5323-3
- M. Artin, Algebraization of formal moduli. I, Global Analysis (Papers in Honor of K. Kodaira), Univ. Tokyo Press, Tokyo, 1969, pp. 21–71. MR 0260746
- Siegfried Bosch, Werner Lütkebohmert, and Michel Raynaud, Néron models, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 21, Springer-Verlag, Berlin, 1990. MR 1045822, DOI 10.1007/978-3-642-51438-8
- Lucia Caporaso, A compactification of the universal Picard variety over the moduli space of stable curves, J. Amer. Math. Soc. 7 (1994), no. 3, 589–660. MR 1254134, DOI 10.1090/S0894-0347-1994-1254134-8
- Cyril D’Souza, Compactification of generalised Jacobians, Proc. Indian Acad. Sci. Sect. A Math. Sci. 88 (1979), no. 5, 419–457. MR 569548
- Eduardo Esteves, Very ampleness for theta on the compactified Jacobian, Math. Z. 226 (1997), no. 2, 181–191. MR 1477626, DOI 10.1007/PL00004338
- Eduardo Esteves, Separation properties of theta functions, Duke Math. J. 98 (1999), no. 3, 565–593. MR 1695802, DOI 10.1215/S0012-7094-99-09818-6
- E. Esteves, M. Gagné and S. Kleiman, Abel maps and presentation schemes, Available at http://xxx.lanl.gov/abs/math.AG/9911069, November, 1999. To appear in a special issue, dedicated to R. Hartshorne.
- Gerd Faltings, Stable $G$-bundles and projective connections, J. Algebraic Geom. 2 (1993), no. 3, 507–568. MR 1211997
- D. Gieseker, Moduli of curves, Tata Inst. Fund. Res. Lecture Notes, Springer-Verlag, 1982.
- K. A. Hirsch, On skew-groups, Proc. London Math. Soc. 45 (1939), 357–368. MR 0000036, DOI 10.1112/plms/s2-45.1.357
- Alexander Grothendieck, Fondements de la géométrie algébrique. [Extraits du Séminaire Bourbaki, 1957–1962.], Secrétariat mathématique, Paris, 1962 (French). MR 0146040
- M. Homma, Personal communication.
- Cahit Arf, Untersuchungen über reinverzweigte Erweiterungen diskret bewerteter perfekter Körper, J. Reine Angew. Math. 181 (1939), 1–44 (German). MR 18, DOI 10.1515/crll.1940.181.1
- L. Illusie, Conditions de finitude relatives, Lecture Notes in Mathematics, vol. 225, Springer-Verlag, 1971, pp. 222–273.
- Masa-Nori Ishida, Compactifications of a family of generalized Jacobian varieties, Proceedings of the International Symposium on Algebraic Geometry (Kyoto Univ., Kyoto, 1977) Kinokuniya Book Store, Tokyo, 1978, pp. 503–524. MR 578869
- Finn Faye Knudsen and David Mumford, The projectivity of the moduli space of stable curves. I. Preliminaries on “det” and “Div”, Math. Scand. 39 (1976), no. 1, 19–55. MR 437541, DOI 10.7146/math.scand.a-11642
- Stacy G. Langton, Valuative criteria for families of vector bundles on algebraic varieties, Ann. of Math. (2) 101 (1975), 88–110. MR 364255, DOI 10.2307/1970987
- A. Mayer and D. Mumford, Further comments on boundary points, Unpublished lecture notes distributed at the Amer. Math. Soc. Summer Institute, Woods Hole, 1964.
- Tadao Oda and C. S. Seshadri, Compactifications of the generalized Jacobian variety, Trans. Amer. Math. Soc. 253 (1979), 1–90. MR 536936, DOI 10.1090/S0002-9947-1979-0536936-4
- Rahul Pandharipande, A compactification over $\overline {M}_g$ of the universal moduli space of slope-semistable vector bundles, J. Amer. Math. Soc. 9 (1996), no. 2, 425–471. MR 1308406, DOI 10.1090/S0894-0347-96-00173-7
- C. S. Seshadri, Fibrés vectoriels sur les courbes algébriques, Astérisque, vol. 96, Société Mathématique de France, Paris, 1982 (French). Notes written by J.-M. Drezet from a course at the École Normale Supérieure, June 1980. MR 699278
- C. S. Seshadri, Vector bundles on curves, Linear algebraic groups and their representations (Los Angeles, CA, 1992) Contemp. Math., vol. 153, Amer. Math. Soc., Providence, RI, 1993, pp. 163–200. MR 1247504, DOI 10.1090/conm/153/01312
- Carlos T. Simpson, Moduli of representations of the fundamental group of a smooth projective variety. I, Inst. Hautes Études Sci. Publ. Math. 79 (1994), 47–129. MR 1307297
Bibliographic Information
- Eduardo Esteves
- Affiliation: Instituto de Matemática Pura e Aplicada, Estrada Dona Castorina 110, 22460-320 Rio de Janeiro RJ, Brazil
- Email: esteves@impa.br
- Received by editor(s): December 15, 1997
- Received by editor(s) in revised form: May 2, 2000
- Published electronically: January 18, 2001
- Additional Notes: Research supported by an MIT Japan Program Starr fellowship, by PRONEX, Convênio 41/96/0883/00 and CNPq, Proc. 300004/95-8.
- © Copyright 2001 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 353 (2001), 3045-3095
- MSC (2000): Primary 14H40, 14H60; Secondary 14D20
- DOI: https://doi.org/10.1090/S0002-9947-01-02746-5
- MathSciNet review: 1828599