Classifying subcategories of modules

Author:
Mark Hovey

Journal:
Trans. Amer. Math. Soc. **353** (2001), 3181-3191

MSC (2000):
Primary 13C05, 18E30, 18G35

DOI:
https://doi.org/10.1090/S0002-9947-01-02747-7

Published electronically:
April 12, 2001

Erratum:
Tran. Amer. Math. Soc. 360 (2008), 2809-2809

MathSciNet review:
1828603

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Let be the quotient of a regular coherent commutative ring by a finitely generated ideal. In this paper, we classify all abelian subcategories of finitely presented -modules that are closed under extensions. We also classify abelian subcategories of arbitrary -modules that are closed under extensions and coproducts, when is commutative and Noetherian. The method relies on comparison with the derived category of .

**[CKN99]**J. Daniel Christensen, Bernhard Keller, and Amnon Neeman,*Failure of Brown representability in derived categories*, preprint, 1999.**[Gla89]**Sarah Glaz,*Commutative coherent rings*, Lecture Notes in Mathematics no. 1371, Springer-Verlag, Berlin, 1989. MR**90f:13001****[Har77]**Robin H. Hartshorne,*Algebraic geometry*, Graduate Texts in Mathematics, vol. 52, Springer-Verlag, 1977. MR**57:3116****[Hop87]**Michael J. Hopkins,*Global methods in homotopy theory*, Homotopy theory (Durham, 1985) (J. D. S. Jones and E. Rees, eds.), London Math. Soc. Lecture Note Ser., vol. 117, Cambridge Univ. Press, Cambridge-New York, 1987, pp. 73-96. MR**89g:55022****[Hov98]**Mark Hovey,*Model categories*, Mathematical Surveys and Monographs, vol. 63, American Mathematical Society, Providence, RI, 1999. MR**99h:55031****[HP99]**Mark Hovey and John H. Palmieri,*Stably thick subcategories of modules over Hopf algebras*, to appear in Math. Proc. Camb. Phil. Soc.**[HP00]**Mark Hovey and John H. Palmieri,*Galois theory of thick subcategories in modular representation theory*, J. Algebra**230**(2000), 713-729. CMP**2000:16****[HPS97]**Mark Hovey, John H. Palmieri, and Neil P. Strickland,*Axiomatic stable homotopy theory*, Mem. Amer. Math. Soc.**128**(1997), no. 610, x+114. MR**98a:55017****[HS98]**Michael J. Hopkins and Jeffrey H. Smith,*Nilpotence and stable homotopy theory. II*, Ann. of Math. (2)**148**(1998), no. 1, 1-49. MR**99h:55009****[Nee92]**A. Neeman,*The chromatic tower for*, Topology**31**(1992), 519-532. MR**93h:18018****[Ste75]**B. Stenström,*Rings of quotients*, Die Grundlehren der mathematischen Wissenschaften, vol. 217, Springer-Verlag, Berlin, 1975. MR**52:10782****[Tho97]**R. W. Thomason,*The classification of triangulated subcategories*, Compositio Math.**105**(1997), no. 1, 1-27. MR**98b:18017**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2000):
13C05,
18E30,
18G35

Retrieve articles in all journals with MSC (2000): 13C05, 18E30, 18G35

Additional Information

**Mark Hovey**

Affiliation:
Department of Mathematics, Wesleyan University, Middletown, Connecticut 06459

Email:
hovey@member.ams.org

DOI:
https://doi.org/10.1090/S0002-9947-01-02747-7

Received by editor(s):
January 15, 2000

Received by editor(s) in revised form:
June 19, 2000

Published electronically:
April 12, 2001

Article copyright:
© Copyright 2001
American Mathematical Society