On Herstein’s Lie map conjectures, I
HTML articles powered by AMS MathViewer
- by K. I. Beidar, M. Brešar, M. A. Chebotar and W. S. Martindale III
- Trans. Amer. Math. Soc. 353 (2001), 4235-4260
- DOI: https://doi.org/10.1090/S0002-9947-01-02731-3
- Published electronically: June 6, 2001
- PDF | Request permission
Abstract:
We describe surjective Lie homomorphisms from Lie ideals of skew elements of algebras with involution onto noncentral Lie ideals (factored by their centers) of skew elements of prime algebras ${\mathcal {D}}$ with involution, provided that $\operatorname {char}({\mathcal {D}})\not =2$ and ${\mathcal {D}}$ is not PI of low degree. This solves the last remaining open problem of Herstein on Lie isomorphisms module cases of PI rings of low degree. A more general problem on maps preserving any polynomial is also discussed.References
- S. A. Amitsur, Identities in rings with involutions, Israel J. Math. 7 (1969), 63–68. MR 242889, DOI 10.1007/BF02771748
- Sh. A. Ayupov, Anti-automorphisms and Lie structures in factors, Uzbek. Mat. Zh. 2 (1992), 8–13 (Russian, with English and Uzbek summaries). MR 1253961
- Shavkat A. Ayupov, Skew commutators and Lie isomorphisms in real von Neumann algebras, J. Funct. Anal. 138 (1996), no. 1, 170–187. MR 1391634, DOI 10.1006/jfan.1996.0060
- Sh. A. Ayupov and N. A. Azamov, Commutators and Lie isomorphisms of skew elements in prime operator algebras, Comm. Algebra 24 (1996), no. 4, 1501–1520. MR 1380607, DOI 10.1080/00927879608825648
- Shavkat Ayupov, Abdugafur Rakhimov, and Shukhrat Usmanov, Jordan, real and Lie structures in operator algebras, Mathematics and its Applications, vol. 418, Kluwer Academic Publishers Group, Dordrecht, 1997. MR 1472732, DOI 10.1007/978-94-015-8605-4
- Ralf Banning and Martin Mathieu, Commutativity preserving mappings on semiprime rings, Comm. Algebra 25 (1997), no. 1, 247–265. MR 1429760, DOI 10.1080/00927879708825851
- K. I. Beidar, On functional identities and commuting additive mappings, Comm. Algebra 26 (1998), no. 6, 1819–1850. MR 1621755, DOI 10.1080/00927879808826241
- K. I. Beidar, Matej Brešar, and M. A. Chebotar, Generalized functional identities with (anti-)automorphisms and derivations on prime rings. I, J. Algebra 215 (1999), no. 2, 644–665. MR 1686209, DOI 10.1006/jabr.1998.7751
- K.I. Beidar, M. Brešar, M.A. Chebotar and W.S. Martindale III, On functional identities in prime rings with involution, II, Comm. Algebra, 28 (2000), 3169–3183.
- K.I. Beidar and M.A. Chebotar, On functional identities and $d$-free subsets of rings, Comm. Algebra 28 (2000), 3925–3951.
- K.I. Beidar and M.A. Chebotar, On functional identities and $d$-free subsets of rings II, Comm. Algebra 28 (2000), 3953–3972.
- K.I. Beidar and M.A. Chebotar, On surjective Lie homomorphisms onto Lie ideals of prime rings, submitted.
- K.I. Beidar and M.A. Chebotar, On additive maps onto Lie ideals of prime rings preserving a polynomial, submitted.
- K. I. Beidar and Y. Fong, On additive isomorphisms of prime rings preserving polynomials, J. Algebra 217 (1999), no. 2, 650–667. MR 1700519, DOI 10.1006/jabr.1998.7833
- K. I. Beidar, Y. Fong, P.-H. Lee, and T.-L. Wong, On additive maps of prime rings satisfying the Engel condition, Comm. Algebra 25 (1997), no. 12, 3889–3902. MR 1481573, DOI 10.1080/00927879708826093
- K. I. Beidar and W. S. Martindale III, On functional identities in prime rings with involution, J. Algebra 203 (1998), no. 2, 491–532. MR 1622795, DOI 10.1006/jabr.1997.7285
- K. I. Beĭdar, W. S. Martindale III, and A. V. Mikhalëv, Lie isomorphisms in prime rings with involution, J. Algebra 169 (1994), no. 1, 304–327. MR 1296596, DOI 10.1006/jabr.1994.1286
- K. I. Beidar, W. S. Martindale III, and A. V. Mikhalev, Rings with generalized identities, Monographs and Textbooks in Pure and Applied Mathematics, vol. 196, Marcel Dekker, Inc., New York, 1996. MR 1368853
- M. I. Berenguer and A. R. Villena, Continuity of Lie derivations on Banach algebras, Proc. Edinburgh Math. Soc. (2) 41 (1998), no. 3, 625–630. MR 1697594, DOI 10.1017/S0013091500019933
- M. I. Berenguer and A. R. Villena, Continuity of Lie mappings of the skew elements of Banach algebras with involution, Proc. Amer. Math. Soc. 126 (1998), no. 9, 2717–2720. MR 1469400, DOI 10.1090/S0002-9939-98-04569-9
- M. I. Berenguer and A. R. Villena, Continuity of Lie isomorphisms of Banach algebras, Bull. London Math. Soc. 31 (1999), no. 1, 6–10. MR 1651037, DOI 10.1112/S0024609398005128
- P.S. Blau, Lie Isomorphisms of Prime Rings Satisfying $S_4$, PhD Thesis, Univ. of Massachusetts, 1996.
- Philip S. Blau, Lie isomorphisms of non-GPI rings with involution, Comm. Algebra 27 (1999), no. 5, 2345–2373. MR 1683870, DOI 10.1080/00927879908826568
- P.S. Blau, Lie isomorphisms of prime rings satisfying $S_4$, Southeast Asian Math. Bull.
- P.S. Blau and W.S. Martindale III, Lie isomorphisms in *-prime GPI rings with involution, Taiwanese J. Math. 4 (2000), 215–252.
- Matej Brešar, Centralizing mappings and derivations in prime rings, J. Algebra 156 (1993), no. 2, 385–394. MR 1216475, DOI 10.1006/jabr.1993.1080
- Matej Brešar, Commuting traces of biadditive mappings, commutativity-preserving mappings and Lie mappings, Trans. Amer. Math. Soc. 335 (1993), no. 2, 525–546. MR 1069746, DOI 10.1090/S0002-9947-1993-1069746-X
- Matej Brešar, On generalized biderivations and related maps, J. Algebra 172 (1995), no. 3, 764–786. MR 1324181, DOI 10.1006/jabr.1995.1069
- Masahisa Sato, QF-$3$ algebras of finite representation type, J. Algebra 177 (1995), no. 1, 186–198. MR 1356367, DOI 10.1006/jabr.1995.1293
- Matej Brešar and M. A. Chebotar, On a certain functional identity in prime rings, Comm. Algebra 26 (1998), no. 11, 3765–3781. MR 1647071, DOI 10.1080/00927879808826373
- Matej Brešar, W. S. Martindale III, and C. Robert Miers, Centralizing maps in prime rings with involution, J. Algebra 161 (1993), no. 2, 342–357. MR 1247360, DOI 10.1006/jabr.1993.1223
- Matej Brešar, W. S. Martindale 3rd, and C. Robert Miers, Maps preserving $n$th powers, Comm. Algebra 26 (1998), no. 1, 117–138. MR 1600658, DOI 10.1080/00927879808826120
- M.A. Chebotar, On Lie automorphisms of simple rings of characteristic 2, Fundamentalnaya i Prikladnaya Matematika 2 (1996), 1257–1268 (Russian).
- M. A. Chebotar, On generalized functional identities on prime rings, J. Algebra 202 (1998), no. 2, 655–670. MR 1617667, DOI 10.1006/jabr.1997.7255
- M. A. Chebotar, On Lie isomorphisms in prime rings with involution, Comm. Algebra 27 (1999), no. 6, 2767–2777. MR 1687301, DOI 10.1080/00927879908826591
- Pierre de la Harpe, Classical Banach-Lie algebras and Banach-Lie groups of operators in Hilbert space, Lecture Notes in Mathematics, Vol. 285, Springer-Verlag, Berlin-New York, 1972. MR 0476820
- Saunders MacLane, Steinitz field towers for modular fields, Trans. Amer. Math. Soc. 46 (1939), 23–45. MR 17, DOI 10.1090/S0002-9947-1939-0000017-3
- I. N. Herstein, Lie and Jordan structures in simple, associative rings, Bull. Amer. Math. Soc. 67 (1961), 517–531. MR 139641, DOI 10.1090/S0002-9904-1961-10666-6
- I. N. Herstein, Topics in ring theory, University of Chicago Press, Chicago, Ill.-London, 1969. MR 0271135
- I. N. Herstein, Rings with involution, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, Ill.-London, 1976. MR 0442017
- Richard A. Howland, Lie isomorphisms of derived rings of simple rings, Trans. Amer. Math. Soc. 145 (1969), 383–396. MR 252441, DOI 10.1090/S0002-9947-1969-0252441-0
- Saunders MacLane, Steinitz field towers for modular fields, Trans. Amer. Math. Soc. 46 (1939), 23–45. MR 17, DOI 10.1090/S0002-9947-1939-0000017-3
- Nathan Jacobson, Lie algebras, Interscience Tracts in Pure and Applied Mathematics, No. 10, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0143793
- N. Jacobson, Structure groups and Lie algebras of Jordan algebras of symmetric elements of associative algebras with involution, Advances in Math. 20 (1976), no. 2, 106–150. MR 407103, DOI 10.1016/0001-8708(76)90183-3
- Charles Hopkins, Rings with minimal condition for left ideals, Ann. of Math. (2) 40 (1939), 712–730. MR 12, DOI 10.2307/1968951
- Cuipo Jiang and Daoji Meng, The derivation algebra of the associative algebra $C_q[X,Y,X^{-1},Y^{-1}]$, Comm. Algebra 26 (1998), no. 6, 1723–1736. MR 1621727, DOI 10.1080/00927879808826234
- Garrett Birkhoff and Morgan Ward, A characterization of Boolean algebras, Ann. of Math. (2) 40 (1939), 609–610. MR 9, DOI 10.2307/1968945
- Pjek Hwee Lee, An example of division rings with involution, J. Algebra 74 (1982), no. 1, 282–283. MR 644235, DOI 10.1016/0021-8693(82)90022-9
- Pjek-Hwee Lee, Tsai-Lien Wong, Jer-Shyong Lin, and Ren-June Wang, Commuting traces of multiadditive mappings, J. Algebra 193 (1997), no. 2, 709–723. MR 1458811, DOI 10.1006/jabr.1996.7016
- Wallace S. Martindale III, Lie isomorphisms of primitive rings, Proc. Amer. Math. Soc. 14 (1963), 909–916. MR 160798, DOI 10.1090/S0002-9939-1963-0160798-4
- Wallace S. Martindale III, Lie derivations of primitive rings, Michigan Math. J. 11 (1964), 183–187. MR 166234
- Wallace S. Martindale III, Jordan homomorphisms of the symmetric elements of a ring with involution, J. Algebra 5 (1967), 232–249. MR 210750, DOI 10.1016/0021-8693(67)90037-3
- W. S. Martindale III, Lie isomorphisms of simple rings, J. London Math. Soc. 44 (1969), 213–221. MR 233845, DOI 10.1112/jlms/s1-44.1.213
- Wallace S. Martindale III, Lie isomorphisms of prime rings, Trans. Amer. Math. Soc. 142 (1969), 437–455. MR 251077, DOI 10.1090/S0002-9947-1969-0251077-5
- Wallace S. Martindale III, Lie isomorphisms of the skew elements of a simple ring with involution, J. Algebra 36 (1975), no. 3, 408–415. MR 382333, DOI 10.1016/0021-8693(75)90141-6
- Wallace S. Martindale 3rd, Lie isomorphisms of the skew elements of a prime ring with involution, Comm. Algebra 4 (1976), no. 10, 929–977. MR 422354, DOI 10.1080/00927877608822146
- W.S. Martindale III, Lie and Jordan mappings, Contemp. Math. 13 (1982), 173–177.
- Wallace S. Martindale III, Jordan homomorphisms onto nondegenerate Jordan algebras, J. Algebra 133 (1990), no. 2, 500–511. MR 1067422, DOI 10.1016/0021-8693(90)90285-V
- Wallace S. Martindale III and C. Robert Miers, Herstein’s Lie theory revisited, J. Algebra 98 (1986), no. 1, 14–37. MR 825133, DOI 10.1016/0021-8693(86)90013-X
- Kevin McCrimmon, The Zel′manov approach to Jordan homomorphisms of associative algebras, J. Algebra 123 (1989), no. 2, 457–477. MR 1000497, DOI 10.1016/0021-8693(89)90056-2
- Daoji Meng and Cuipo Jiang, The derivation algebra and the universal central extension of the $q$-analog of the Virasoro-like algebra, Comm. Algebra 26 (1998), no. 4, 1335–1346. MR 1612173, DOI 10.1080/00927879808826202
- C. Robert Miers, Lie isomorphisms of factors, Trans. Amer. Math. Soc. 147 (1970), 55–63. MR 273423, DOI 10.1090/S0002-9947-1970-0273423-7
- C. Robert Miers, Lie $^*$-triple homomorphisms into von Neumann algebras, Proc. Amer. Math. Soc. 58 (1976), 169–172. MR 410406, DOI 10.1090/S0002-9939-1976-0410406-9
- C. Robert Miers, Lie triple derivations of von Neumann algebras, Proc. Amer. Math. Soc. 71 (1978), no. 1, 57–61. MR 487480, DOI 10.1090/S0002-9939-1978-0487480-9
- S. Montgomery, Constructing simple Lie superalgebras from associative graded algebras, J. Algebra 195 (1997), no. 2, 558–579. MR 1469640, DOI 10.1006/jabr.1997.7050
- Claudio Procesi, Rings with polynomial identities, Pure and Applied Mathematics, vol. 17, Marcel Dekker, Inc., New York, 1973. MR 0366968
- Mary Peles Rosen, Isomorphisms of a certain class of prime Lie rings, J. Algebra 89 (1984), no. 2, 291–317. MR 751146, DOI 10.1016/0021-8693(84)90219-9
- Louis Halle Rowen, Polynomial identities in ring theory, Pure and Applied Mathematics, vol. 84, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1980. MR 576061
- Gordon A. Swain, Lie derivations of the skew elements of prime rings with involution, J. Algebra 184 (1996), no. 2, 679–704. MR 1409235, DOI 10.1006/jabr.1996.0281
- Gordon A. Swain and Philip S. Blau, Lie derivations in prime rings with involution, Canad. Math. Bull. 42 (1999), no. 3, 401–411. MR 1703701, DOI 10.4153/CMB-1999-047-6
- E. I. Zel′manov, Prime Jordan algebras. II, Sibirsk. Mat. Zh. 24 (1983), no. 1, 89–104, 192 (Russian). MR 688595
Bibliographic Information
- K. I. Beidar
- Affiliation: Department of Mathematics, National Cheng-Kung University, Tainan, Taiwan
- Email: beidar@mail.ncku.edu.tw
- M. Brešar
- Affiliation: Department of Mathematics, PF, University of Maribor, Maribor, Slovenia
- Email: bresar@uni-mb.si
- M. A. Chebotar
- Affiliation: Department of Mechanics and Mathematics, Tula State University, Tula, Russia
- Email: mchebotar@tula.net
- W. S. Martindale III
- Affiliation: Department of Mathematics, University of Massachusetts, Amherst, Massachusetts 01003
- Email: jmartind@chapline.net
- Received by editor(s): October 6, 1999
- Received by editor(s) in revised form: June 1, 2000
- Published electronically: June 6, 2001
- Additional Notes: The second author was partially supported by a grant from the Ministry of Science of Slovenia
- © Copyright 2001 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 353 (2001), 4235-4260
- MSC (1991): Primary 16W10, 16W20, 16R50
- DOI: https://doi.org/10.1090/S0002-9947-01-02731-3
- MathSciNet review: 1837230