A momentum construction for circle-invariant Kähler metrics
HTML articles powered by AMS MathViewer
- by Andrew D. Hwang and Michael A. Singer
- Trans. Amer. Math. Soc. 354 (2002), 2285-2325
- DOI: https://doi.org/10.1090/S0002-9947-02-02965-3
- Published electronically: February 13, 2002
- PDF | Request permission
Abstract:
Examples of Kähler metrics of constant scalar curvature are relatively scarce. Over the past two decades, several workers in geometry and physics have used symmetry reduction to construct complete Kähler metrics of constant scalar curvature by ODE methods. One fruitful idea—the “Calabi ansatz”—is to begin with an Hermitian line bundle $p:(L,h)\to (M,g_M)$ over a Kähler manifold, and to search for Kähler forms $\omega =p^*\omega _M+dd^c f(t)$ in some disk subbundle, where $t$ is the logarithm of the norm function and $f$ is a function of one variable. Our main technical result (Theorem A) is the calculation of the scalar curvature for an arbitrary Kähler metric $g$ arising from the Calabi ansatz. This suggests geometric hypotheses (which we call “$\sigma$-constancy”) to impose upon the base metric $g_M$ and Hermitian structure $h$ in order that the scalar curvature of $g$ be specified by solving an ODE. We show that $\sigma$-constancy is “necessary and sufficient for the Calabi ansatz to work” in the following sense. Under the assumption of $\sigma$-constancy, the disk bundle admits a one-parameter family of complete Kähler metrics of constant scalar curvature that restrict to $g_M$ on the zero section (Theorems B and D); an analogous result holds for the punctured disk bundle (Theorem C). A simple criterion determines when such a metric is Einstein. Conversely, in the absence of $\sigma$-constancy the Calabi ansatz yields at most one metric of constant scalar curvature, in either the disk bundle or the punctured disk bundle (Theorem E). Many of the metrics constructed here seem to be new, including a complete, negative Einstein-Kähler metric on the disk subbundle of a stable vector bundle over a Riemann surface of genus at least two, and a complete, scalar-flat Kähler metric on $\mathbf {C}^2$.References
- M. F. Atiyah and R. Bott, The Yang-Mills equations over Riemann surfaces, Philos. Trans. Roy. Soc. London Ser. A 308 (1983), no. 1505, 523–615. MR 702806, DOI 10.1098/rsta.1983.0017
- Lionel Bérard-Bergery, Sur de nouvelles variétés riemanniennes d’Einstein, Institut Élie Cartan, 6, Inst. Élie Cartan, vol. 6, Univ. Nancy, Nancy, 1982, pp. 1–60 (French). MR 727843
- Arthur L. Besse, Einstein manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 10, Springer-Verlag, Berlin, 1987. MR 867684, DOI 10.1007/978-3-540-74311-8
- E. Calabi, Métriques kählériennes et fibrés holomorphes, Ann. Sci. École Norm. Sup. (4) 12 (1979), no. 2, 269–294 (French). MR 543218
- Eugenio Calabi, Extremal Kähler metrics, Seminar on Differential Geometry, Ann. of Math. Stud., vol. 102, Princeton Univ. Press, Princeton, N.J., 1982, pp. 259–290. MR 645743
- A. Dancer and M. Y. Wang: Kähler-Einstein metrics of cohomogeneity one, and a bundle construction for Einstein-Hermitian metrics, preprint, 1997.
- Martin Engman, New spectral characterization theorems for $S^2$, Pacific J. Math. 154 (1992), no. 2, 215–229. MR 1159507
- Martin Engman, Trace formulae for $S^1$ invariant Green’s operators on $S^2$, Manuscripta Math. 93 (1997), no. 3, 357–368. MR 1457734, DOI 10.1007/BF02677477
- Akira Fujiki, Remarks on extremal Kähler metrics on ruled manifolds, Nagoya Math. J. 126 (1992), 89–101. MR 1171594, DOI 10.1017/S0027763000004001
- Daniel Guan, Existence of extremal metrics on compact almost homogeneous Kähler manifolds with two ends, Trans. Amer. Math. Soc. 347 (1995), no. 6, 2255–2262. MR 1285992, DOI 10.1090/S0002-9947-1995-1285992-6
- Daniel Zhuang-Dan Guan, Quasi-Einstein metrics, Internat. J. Math. 6 (1995), no. 3, 371–379. MR 1327154, DOI 10.1142/S0129167X95000110
- Andrew D. Hwang, On existence of Kähler metrics with constant scalar curvature, Osaka J. Math. 31 (1994), no. 3, 561–595. MR 1309403
- Shoshichi Kobayashi, Transformation groups in differential geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 70, Springer-Verlag, New York-Heidelberg, 1972. MR 0355886
- Shoshichi Kobayashi, Differential geometry of complex vector bundles, Publications of the Mathematical Society of Japan, vol. 15, Princeton University Press, Princeton, NJ; Princeton University Press, Princeton, NJ, 1987. Kanô Memorial Lectures, 5. MR 909698, DOI 10.1515/9781400858682
- Norihito Koiso, On rotationally symmetric Hamilton’s equation for Kähler-Einstein metrics, Recent topics in differential and analytic geometry, Adv. Stud. Pure Math., vol. 18, Academic Press, Boston, MA, 1990, pp. 327–337. MR 1145263, DOI 10.2969/aspm/01810327
- Norihito Koiso and Yusuke Sakane, Nonhomogeneous Kähler-Einstein metrics on compact complex manifolds, Curvature and topology of Riemannian manifolds (Katata, 1985) Lecture Notes in Math., vol. 1201, Springer, Berlin, 1986, pp. 165–179. MR 859583, DOI 10.1007/BFb0075654
- Norihito Koiso and Yusuke Sakane, Nonhomogeneous Kähler-Einstein metrics on compact complex manifolds. II, Osaka J. Math. 25 (1988), no. 4, 933–959. MR 983813
- Claude LeBrun, Counter-examples to the generalized positive action conjecture, Comm. Math. Phys. 118 (1988), no. 4, 591–596. MR 962489
- Claude LeBrun, Explicit self-dual metrics on $\textbf {C}\textrm {P}_2\#\cdots \#\textbf {C}\textrm {P}_2$, J. Differential Geom. 34 (1991), no. 1, 223–253. MR 1114461
- Claude LeBrun, Scalar-flat Kähler metrics on blown-up ruled surfaces, J. Reine Angew. Math. 420 (1991), 161–177. MR 1124569, DOI 10.1515/crll.1991.420.161
- C. LeBrun and S. R. Simanca, Extremal Kähler metrics and complex deformation theory, Geom. Funct. Anal. 4 (1994), no. 3, 298–336. MR 1274118, DOI 10.1007/BF01896244
- S. Minakshi Sundaram, On non-linear partial differential equations of the hyperbolic type, Proc. Indian Acad. Sci., Sect. A. 9 (1939), 495–503. MR 0000089
- Yozo Matsushima, Remarks on Kähler-Einstein manifolds, Nagoya Math. J. 46 (1972), 161–173. MR 303478
- Saunders MacLane and O. F. G. Schilling, Infinite number fields with Noether ideal theories, Amer. J. Math. 61 (1939), 771–782. MR 19, DOI 10.2307/2371335
- Alan Michael Nadel, Multiplier ideal sheaves and Kähler-Einstein metrics of positive scalar curvature, Ann. of Math. (2) 132 (1990), no. 3, 549–596. MR 1078269, DOI 10.2307/1971429
- M. S. Narasimhan and C. S. Seshadri, Stable and unitary vector bundles on a compact Riemann surface, Ann. of Math. (2) 82 (1965), 540–567. MR 184252, DOI 10.2307/1970710
- K. P. Tod, A comment on: “Kähler surfaces with zero scalar curvature” [Classical Quantum Gravity 7 (1990), no. 10, 1707–1719; MR1075860 (91i:53057)] by H. Pedersen and Y. S. Poon, Classical Quantum Gravity 8 (1991), no. 5, 1049–1051. MR 1104774
- Fabio Podestà and Andrea Spiro, Kähler manifolds with large isometry group, Osaka J. Math. 36 (1999), no. 4, 805–833. MR 1745655
- Yusuke Sakane, Examples of compact Einstein Kähler manifolds with positive Ricci tensor, Osaka J. Math. 23 (1986), no. 3, 585–616. MR 866267
- Santiago R. Simanca, Kähler metrics of constant scalar curvature on bundles over $\textbf {C}\textrm {P}_{n-1}$, Math. Ann. 291 (1991), no. 2, 239–246. MR 1129363, DOI 10.1007/BF01445203
- Yum Tong Siu, The existence of Kähler-Einstein metrics on manifolds with positive anticanonical line bundle and a suitable finite symmetry group, Ann. of Math. (2) 127 (1988), no. 3, 585–627. MR 942521, DOI 10.2307/2007006
- Iskander A. Taimanov, Surfaces of revolution in terms of solitons, Ann. Global Anal. Geom. 15 (1997), no. 5, 419–435. MR 1482896, DOI 10.1023/A:1006596720792
- G. Tian, On Calabi’s conjecture for complex surfaces with positive first Chern class, Invent. Math. 101 (1990), no. 1, 101–172. MR 1055713, DOI 10.1007/BF01231499
- S.-T. Yau (ed.), Mathematical aspects of string theory, Advanced Series in Mathematical Physics, vol. 1, World Scientific Publishing Co., Singapore, 1987. MR 915812, DOI 10.1142/0383
- C. Tønnesen-Friedman: Extremal Kähler metrics on ruled surfaces, Odense Univ. Preprint No. 36, 1997.
Bibliographic Information
- Andrew D. Hwang
- Affiliation: Department of Mathematics and Computer Science, College of The Holy Cross, Worcester, Massachusetts 01610-2395
- Email: ahwang@mathcs.holycross.edu
- Michael A. Singer
- Affiliation: Department of Mathematics and Statistics, University of Edinburgh, Edinburgh, EH9 3JZ, UK
- MR Author ID: 215930
- Email: michael@maths.ed.ac.uk
- Received by editor(s): May 16, 2001
- Received by editor(s) in revised form: October 18, 2001
- Published electronically: February 13, 2002
- Additional Notes: MAS is an EPSRC advanced fellow; ADH was supported in part by JSPS Fellowship #P-94016 and an NSERC Canada Research Grant.
- © Copyright 2002 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 354 (2002), 2285-2325
- MSC (1991): Primary 53C55; Secondary 32L05, 53C21, 53C25
- DOI: https://doi.org/10.1090/S0002-9947-02-02965-3
- MathSciNet review: 1885653