## Partial regularity for the stochastic Navier-Stokes equations

HTML articles powered by AMS MathViewer

- by Franco Flandoli and Marco Romito PDF
- Trans. Amer. Math. Soc.
**354**(2002), 2207-2241 Request permission

## Abstract:

The effects of random forces on the emergence of singularities in the Navier-Stokes equations are investigated. In spite of the presence of white noise, the paths of a martingale suitable weak solution have a set of singular points of one-dimensional Hausdorff measure zero. Furthermore statistically stationary solutions with finite mean dissipation rate are analysed. For these stationary solutions it is proved that at any time $t$ the set of singular points is empty. The same result holds true for every martingale solution starting from $\mu _0$-a.e. initial condition $u_0$, where $\mu _0$ is the law at time zero of a stationary solution. Finally, the previous result is non-trivial when the noise is sufficiently non-degenerate, since for any stationary solution, the measure $\mu _0$ is supported on the whole space $H$ of initial conditions.## References

- John B. Bell and Daniel L. Marcus,
*Vorticity intensification and transition to turbulence in the three-dimensional Euler equations*, Comm. Math. Phys.**147**(1992), no. 2, 371–394. MR**1174419** - L. Caffarelli, R. Kohn, and L. Nirenberg,
*Partial regularity of suitable weak solutions of the Navier-Stokes equations*, Comm. Pure Appl. Math.**35**(1982), no. 6, 771–831. MR**673830**, DOI 10.1002/cpa.3160350604 - Alexandre Joel Chorin,
*The evolution of a turbulent vortex*, Comm. Math. Phys.**83**(1982), no. 4, 517–535. MR**649815** - Alexandre J. Chorin,
*Vorticity and turbulence*, Applied Mathematical Sciences, vol. 103, Springer-Verlag, New York, 1994. MR**1281384**, DOI 10.1007/978-1-4419-8728-0 - Giuseppe Da Prato and Jerzy Zabczyk,
*Stochastic equations in infinite dimensions*, Encyclopedia of Mathematics and its Applications, vol. 44, Cambridge University Press, Cambridge, 1992. MR**1207136**, DOI 10.1017/CBO9780511666223 - Guy David and Stephen Semmes,
*Fractured fractals and broken dreams*, Oxford Lecture Series in Mathematics and its Applications, vol. 7, The Clarendon Press, Oxford University Press, New York, 1997. Self-similar geometry through metric and measure. MR**1616732** - Franco Flandoli,
*Stochastic differential equations in fluid dynamics*, Rend. Sem. Mat. Fis. Milano**66**(1996), 121–148 (1998). MR**1639835**, DOI 10.1007/BF02925357 - Franco Flandoli,
*Irreducibility of the $3$-D stochastic Navier-Stokes equation*, J. Funct. Anal.**149**(1997), no. 1, 160–177. MR**1471103**, DOI 10.1006/jfan.1996.3089 - F. Flandoli, M. Romito,
*Statistically stationary solutions to the 3D Navier-Stokes equations do not show singularities*, Elec. J. Prob.**6**(2001), no. 5 (electronic) - G. Gallavotti,
*Ipotesi per una introduzione alla Meccanica dei Fluidi*, Quaderni del CNR-GNFM**52**, Roma 1996. - R. Grauer, T. Sideris,
*Numerical computation of 3D incompressible ideal fluids with swirl*, Phys. Rev. Lett.**67**(1991), 3511–3514. - Robert M. Kerr,
*Evidence for a singularity of the three-dimensional, incompressible Euler equations*, Phys. Fluids A**5**(1993), no. 7, 1725–1746. MR**1223050**, DOI 10.1063/1.858849 - Leonard Eugene Dickson,
*New First Course in the Theory of Equations*, John Wiley & Sons, Inc., New York, 1939. MR**0000002** - Oscar E. Lanford III,
*Time evolution of large classical systems*, Dynamical systems, theory and applications (Rencontres, Battelle Res. Inst., Seattle, Wash., 1974) Lecture Notes in Phys., Vol. 38, Springer, Berlin, 1975, pp. 1–111. MR**0479206** - J. Leray,
*Essai sur le mouvement d’un liquide visqueux emplissant l’espace*, Acta Math.**63**(1934), 193–248. - Benoit Mandelbrot,
*Les objets fractals*, Nouvelle Bibliothèque Scientifique, Flammarion, Éditeur, Paris, 1975 (French). Forme, hasard et dimension. MR**0462040** - Benoit Mandelbrot,
*Intermittent turbulence and fractal dimension: kurtosis and the spectral exponent $5/3+B$*, Turbulence and Navier-Stokes equations (Proc. Conf., Univ. Paris-Sud, Orsay, 1975) Lecture Notes in Math., Vol. 565, Springer, Berlin, 1976, pp. 121–145. MR**0495674** - J. Nečas, M. Růžička, and V. Šverák,
*On Leray’s self-similar solutions of the Navier-Stokes equations*, Acta Math.**176**(1996), no. 2, 283–294. MR**1397564**, DOI 10.1007/BF02551584 - M. Romito,
*Existence of martingale and stationary suitable weak solutions for a stochastic Navier-Stokes system*, Preprint, Quad. Dip. U. Dini, Firenze (2000). - M. Romito,
*Partial regularity theory for a stochastic Navier-Stokes system*, Thesis, Pisa (2000). - Vladimir Scheffer,
*Turbulence and Hausdorff dimension*, Turbulence and Navier-Stokes equations (Proc. Conf., Univ. Paris-Sud, Orsay, 1975) Lecture Notes in Math., Vol. 565, Springer, Berlin, 1976, pp. 174–183. MR**0452123** - Vladimir Scheffer,
*Partial regularity of solutions to the Navier-Stokes equations*, Pacific J. Math.**66**(1976), no. 2, 535–552. MR**454426** - Vladimir Scheffer,
*Hausdorff measure and the Navier-Stokes equations*, Comm. Math. Phys.**55**(1977), no. 2, 97–112. MR**510154** - Vladimir Scheffer,
*The Navier-Stokes equations in space dimension four*, Comm. Math. Phys.**61**(1978), no. 1, 41–68. MR**501249** - Vladimir Scheffer,
*A solution to the Navier-Stokes inequality with an internal singularity*, Comm. Math. Phys.**101**(1985), no. 1, 47–85. MR**814542** - Vladimir Scheffer,
*Solutions to the Navier-Stokes inequality with singularities on a Cantor set*, Geometric measure theory and the calculus of variations (Arcata, Calif., 1984) Proc. Sympos. Pure Math., vol. 44, Amer. Math. Soc., Providence, RI, 1986, pp. 359–367. MR**840286**, DOI 10.1090/pspum/044/840286 - Vladimir Scheffer,
*Nearly one-dimensional singularities of solutions to the Navier-Stokes inequality*, Comm. Math. Phys.**110**(1987), no. 4, 525–551. MR**895215** - James Serrin,
*On the interior regularity of weak solutions of the Navier-Stokes equations*, Arch. Rational Mech. Anal.**9**(1962), 187–195. MR**136885**, DOI 10.1007/BF00253344 - James Serrin,
*The initial value problem for the Navier-Stokes equations*, Nonlinear Problems (Proc. Sympos., Madison, Wis., 1962) Univ. Wisconsin Press, Madison, Wis., 1963, pp. 69–98. MR**0150444** - Ra. Siegmund-Schultze,
*On nonequilibrium dynamics of multidimensional infinite particle systems in the translation invariant case*, Comm. Math. Phys.**100**(1985), no. 2, 245–265. MR**804462** - V. A. Solonnikov,
*Estimates for solutions of a non-stationary linearized system of Navier-Stokes equations*, Trudy Mat. Inst. Steklov.**70**(1964), 213–317 (Russian). MR**0171094** - Elias M. Stein,
*Singular integrals and differentiability properties of functions*, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR**0290095** - Roger Temam,
*Navier-Stokes equations. Theory and numerical analysis*, Studies in Mathematics and its Applications, Vol. 2, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977. MR**0609732** - Roger Temam,
*Navier-Stokes equations and nonlinear functional analysis*, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 41, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1983. MR**764933** - Roger Temam,
*Infinite-dimensional dynamical systems in mechanics and physics*, Applied Mathematical Sciences, vol. 68, Springer-Verlag, New York, 1988. MR**953967**, DOI 10.1007/978-1-4684-0313-8

## Additional Information

**Franco Flandoli**- Affiliation: Dipartimento di Matematica Applicata, Università di Pisa, Via Bonanno 25/b, 56126 Pisa, Italia
- Email: flandoli@dma.unipi.it
**Marco Romito**- Affiliation: Dipartimento di Matematica, Università di Firenze, Viale Morgagni 67/a, 50134 Firenze, Italia
- Email: romito@math.unifi.it
- Received by editor(s): January 11, 2001
- Received by editor(s) in revised form: July 21, 2001
- Published electronically: February 14, 2002
- © Copyright 2002 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**354**(2002), 2207-2241 - MSC (2000): Primary 76D05; Secondary 35A20, 35R60
- DOI: https://doi.org/10.1090/S0002-9947-02-02975-6
- MathSciNet review: 1885650