A priori degeneracy of one-dimensional rotation sets for periodic point free torus maps
HTML articles powered by AMS MathViewer
- by Jaroslaw Kwapisz
- Trans. Amer. Math. Soc. 354 (2002), 2865-2895
- DOI: https://doi.org/10.1090/S0002-9947-02-02952-5
- Published electronically: March 7, 2002
Abstract:
Diffeomorphisms of the two torus that are isotopic to the identity have rotation sets that are convex compact subsets of the plane. We show that certain line segments (including all rationally sloped segments with no rational points) cannot be realized as a rotation set.References
- Lars V. Ahlfors, Lectures on quasiconformal mappings, Van Nostrand Mathematical Studies, No. 10, D. Van Nostrand Co., Inc., Toronto, Ont.-New York-London, 1966. Manuscript prepared with the assistance of Clifford J. Earle, Jr. MR 0200442
- Lluís Alsedà, Jaume Llibre, and MichałMisiurewicz, Combinatorial dynamics and entropy in dimension one, Advanced Series in Nonlinear Dynamics, vol. 5, World Scientific Publishing Co., Inc., River Edge, NJ, 1993. MR 1255515, DOI 10.1142/1980
- C. Baesens, J. Guckenheimer, S. Kim, and R. S. MacKay, Three coupled oscillators: mode-locking, global bifurcations and toroidal chaos, Phys. D 49 (1991), no. 3, 387–475. MR 1115870, DOI 10.1016/0167-2789(91)90155-3
- G. E. Bredon, Topology and geometry, Springer, New York, 1993.
- Patrice Le Calvez, Propriétés dynamiques des difféomorphismes de l’anneau et du tore, Astérisque 204 (1991), 131 (French, with English and French summaries). MR 1183304
- John Franks, Realizing rotation vectors for torus homeomorphisms, Trans. Amer. Math. Soc. 311 (1989), no. 1, 107–115. MR 958891, DOI 10.1090/S0002-9947-1989-0958891-1
- John Franks, A new proof of the Brouwer plane translation theorem, Ergodic Theory Dynam. Systems 12 (1992), no. 2, 217–226. MR 1176619, DOI 10.1017/S0143385700006702
- John Franks, The rotation set and periodic points for torus homeomorphisms, Dynamical systems and chaos, Vol. 1 (Hachioji, 1994) World Sci. Publ., River Edge, NJ, 1995, pp. 41–48. MR 1479903
- John Franks, Rotation vectors and fixed points of area preserving surface diffeomorphisms, Trans. Amer. Math. Soc. 348 (1996), no. 7, 2637–2662. MR 1325916, DOI 10.1090/S0002-9947-96-01502-4
- John Franks and MichałMisiurewicz, Rotation sets of toral flows, Proc. Amer. Math. Soc. 109 (1990), no. 1, 243–249. MR 1021217, DOI 10.1090/S0002-9939-1990-1021217-5
- David Fried, The geometry of cross sections to flows, Topology 21 (1982), no. 4, 353–371. MR 670741, DOI 10.1016/0040-9383(82)90017-9
- Michael Handel, Periodic point free homeomorphism of $T^2$, Proc. Amer. Math. Soc. 107 (1989), no. 2, 511–515. MR 965243, DOI 10.1090/S0002-9939-1989-0965243-2
- Michael-R. Herman, Une méthode pour minorer les exposants de Lyapounov et quelques exemples montrant le caractère local d’un théorème d’Arnol′d et de Moser sur le tore de dimension $2$, Comment. Math. Helv. 58 (1983), no. 3, 453–502 (French). MR 727713, DOI 10.1007/BF02564647
- Michael Herman, Some open problems in dynamical systems, Proceedings of the International Congress of Mathematicians, Vol. II (Berlin, 1998), 1998, pp. 797–808. MR 1648127
- Russell A. Johnson, Ergodic theory and linear differential equations, J. Differential Equations 28 (1978), no. 1, 23–34. MR 487484, DOI 10.1016/0022-0396(78)90077-3
- R. Johnson and J. Moser, The rotation number for almost periodic potentials, Comm. Math. Phys. 84 (1982), no. 3, 403–438. MR 667409
- Leo B. Jonker and Lei Zhang, Torus homeomorphisms whose rotation sets have empty interior, Ergodic Theory Dynam. Systems 18 (1998), no. 5, 1173–1185. MR 1653236, DOI 10.1017/S0143385798117959
- Jaroslaw Kwapisz, Every convex polygon with rational vertices is a rotation set, Ergodic Theory Dynam. Systems 12 (1992), no. 2, 333–339. MR 1176627, DOI 10.1017/S0143385700006787
- —, Rotation sets and entropy, SUNY at Stony Brook PhD thesis, 1995.
- Jaroslaw Kwapisz, A toral diffeomorphism with a nonpolygonal rotation set, Nonlinearity 8 (1995), no. 4, 461–476. MR 1342499
- Jaroslaw Kwapisz, Poincaré rotation number for maps of the real line with almost periodic displacement, Nonlinearity 13 (2000), no. 5, 1841–1854. MR 1781820, DOI 10.1088/0951-7715/13/5/320
- —, Combinatorics of torus diffeomorphisms, to be published in Erg. Th. & Dyn. Sys., 2001.
- —, Renormalizing torus and annulus maps, in progress, 2001.
- O. Lehto and K. I. Virtanen, Quasiconformal mappings in the plane, 2nd ed., Die Grundlehren der mathematischen Wissenschaften, Band 126, Springer-Verlag, New York-Heidelberg, 1973. Translated from the German by K. W. Lucas. MR 0344463
- J. Llibre and R. S. MacKay, Rotation vectors and entropy for homeomorphisms of the torus isotopic to the identity, Ergodic Theory Dynam. Systems 11 (1991), no. 1, 115–128. MR 1101087, DOI 10.1017/S0143385700006040
- Ricardo Mañé, Ergodic theory and differentiable dynamics, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 8, Springer-Verlag, Berlin, 1987. Translated from the Portuguese by Silvio Levy. MR 889254, DOI 10.1007/978-3-642-70335-5
- Dusa McDuff and Dietmar Salamon, Introduction to symplectic topology, 2nd ed., Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1998. MR 1698616
- MichałMisiurewicz and Krystyna Ziemian, Rotation sets for maps of tori, J. London Math. Soc. (2) 40 (1989), no. 3, 490–506. MR 1053617, DOI 10.1112/jlms/s2-40.3.490
- MichałMisiurewicz and Krystyna Ziemian, Rotation sets and ergodic measures for torus homeomorphisms, Fund. Math. 137 (1991), no. 1, 45–52. MR 1100607, DOI 10.4064/fm-137-1-45-52
- Edwin E. Moise, Geometric topology in dimensions $2$ and $3$, Graduate Texts in Mathematics, Vol. 47, Springer-Verlag, New York-Heidelberg, 1977. MR 0488059
- Edward E. Slaminka, A Brouwer translation theorem for free homeomorphisms, Trans. Amer. Math. Soc. 306 (1988), no. 1, 277–291. MR 927691, DOI 10.1090/S0002-9947-1988-0927691-X
- V. V. Veremenyuk, The existence of the rotation number of the equation $\dot x=\lambda (t,x)$ with a right-hand side that is periodic in $x$ and almost periodic in $t$, Differentsial′nye Uravneniya 27 (1991), no. 6, 1073–1076, 1102 (Russian). MR 1130294
Bibliographic Information
- Jaroslaw Kwapisz
- Affiliation: Department of Mathematical Sciences, Montana State University, Bozeman, Montana 59717-2400
- Email: jarek@math.montana.edu
- Received by editor(s): January 10, 2001
- Received by editor(s) in revised form: August 31, 2001
- Published electronically: March 7, 2002
- Additional Notes: Partially supported by NSF grant DMS-9970725 and MONTS-190729.
- © Copyright 2002 Jaroslaw Kwapisz
- Journal: Trans. Amer. Math. Soc. 354 (2002), 2865-2895
- MSC (1991): Primary 37E45, 37E30
- DOI: https://doi.org/10.1090/S0002-9947-02-02952-5
- MathSciNet review: 1895207