## Enright’s completions and injectively copresented modules

HTML articles powered by AMS MathViewer

- by Steffen König and Volodymyr Mazorchuk PDF
- Trans. Amer. Math. Soc.
**354**(2002), 2725-2743 Request permission

## Abstract:

Let $\mathfrak {A}$ be a finite-dimensional simple Lie algebra over the complex numbers. It is shown that a module is complete (or relatively complete) in the sense of Enright if and only if it is injectively copresented by certain injective modules in the BGG-category ${\mathcal O}$. Let $A$ be the finite-dimensional algebra associated to a block of ${\mathcal O}$. Then the corresponding block of the category of complete modules is equivalent to the category of $eAe$-modules for a suitable choice of the idempotent $e$. Using this equivalence, a very easy proof is given for Deodhar’s theorem (also proved by Bouaziz) that completion functors satisfy braid relations. The algebra $eAe$ is left properly and standardly stratified. It satisfies a double centralizer property similar to Soergel’s “combinatorial description” of ${\mathcal O}$. Its simple objects, their characters and their multiplicities in projective or standard objects are determined.## References

- István Ágoston, Vlastimil Dlab, and Erzsébet Lukács,
*Stratified algebras*, C. R. Math. Acad. Sci. Soc. R. Can.**20**(1998), no. 1, 22–28 (English, with French summary). MR**1619048** - Maurice Auslander,
*Representation theory of Artin algebras. I, II*, Comm. Algebra**1**(1974), 177–268; ibid. 1 (1974), 269–310. MR**349747**, DOI 10.1080/00927877408548230 - Ju Le Zhang,
*$p$-injectivity and Artinian semisimple rings*, J. Math. Res. Exposition**11**(1991), no. 4, 579–585 (English, with Chinese summary). MR**1144962** - Maurice Auslander and Idun Reiten,
*Applications of contravariantly finite subcategories*, Adv. Math.**86**(1991), no. 1, 111–152. MR**1097029**, DOI 10.1016/0001-8708(91)90037-8 - J. N. Bernstein and S. I. Gel′fand,
*Tensor products of finite- and infinite-dimensional representations of semisimple Lie algebras*, Compositio Math.**41**(1980), no. 2, 245–285. MR**581584** - I. N. Bernšteĭn, I. M. Gel′fand, and S. I. Gel′fand,
*A certain category of ${\mathfrak {g}}$-modules*, Funkcional. Anal. i Priložen.**10**(1976), no. 2, 1–8 (Russian). MR**0407097** - A. Bouaziz,
*Sur les représentations des algèbres de Lie semi-simples construites par T. Enright*, Noncommutative harmonic analysis and Lie groups (Marseille, 1980) Lecture Notes in Math., vol. 880, Springer, Berlin-New York, 1981, pp. 57–68 (French). MR**644827** -
*T.Brüstle, S.König and V.Mazorchuk,*The coinvariant algebra and representation types of blocks of category ${\mathcal O}$. Bull. London Math. Soc. 33 (2001), 669-681. - E. Cline, B. Parshall, and L. Scott,
*Finite-dimensional algebras and highest weight categories*, J. Reine Angew. Math.**391**(1988), 85–99. MR**961165** - Edward Cline, Brian Parshall, and Leonard Scott,
*Stratifying endomorphism algebras*, Mem. Amer. Math. Soc.**124**(1996), no. 591, viii+119. MR**1350891**, DOI 10.1090/memo/0591 - Vinay V. Deodhar,
*On a construction of representations and a problem of Enright*, Invent. Math.**57**(1980), no. 2, 101–118. MR**567193**, DOI 10.1007/BF01390091 - Jacques Dixmier,
*Enveloping algebras*, Graduate Studies in Mathematics, vol. 11, American Mathematical Society, Providence, RI, 1996. Revised reprint of the 1977 translation. MR**1393197**, DOI 10.1090/gsm/011 - Vlastimil Dlab and Claus Michael Ringel,
*Every semiprimary ring is the endomorphism ring of a projective module over a quasihereditary ring*, Proc. Amer. Math. Soc.**107**(1989), no. 1, 1–5. MR**943793**, DOI 10.1090/S0002-9939-1989-0943793-2 - Thomas J. Enright,
*On the fundamental series of a real semisimple Lie algebra: their irreducibility, resolutions and multiplicity formulae*, Ann. of Math. (2)**110**(1979), no. 1, 1–82. MR**541329**, DOI 10.2307/1971244 -
*V.Futorny, S.König and V.Mazorchuk*, Categories of induced modules and standardly stratified algebras. To appear in Algebras and Representation Theory. - V. Futorny, S. König, and V. Mazorchuk,
*A combinatorial description of blocks in ${\scr O}({\scr P},\Lambda )$ associated with $\rm sl(2)$-induction*, J. Algebra**231**(2000), no. 1, 86–103. MR**1779594**, DOI 10.1006/jabr.2000.8356 - Vyacheslav Futorny, Steffen König, and Volodymyr Mazorchuk,
*$\scr S$-subcategories in $\scr O$*, Manuscripta Math.**102**(2000), no. 4, 487–503. MR**1785327**, DOI 10.1007/s002290070038 - Jens Carsten Jantzen,
*Einhüllende Algebren halbeinfacher Lie-Algebren*, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 3, Springer-Verlag, Berlin, 1983 (German). MR**721170**, DOI 10.1007/978-3-642-68955-0 - A. Joseph,
*The Enright functor on the Bernstein-Gel′fand-Gel′fand category ${\cal O}$*, Invent. Math.**67**(1982), no. 3, 423–445. MR**664114**, DOI 10.1007/BF01398930 -
*M.Klucznik and V.Mazorchuk*, Parabolic decomposition for properly stratified algebras. Preprint 99-083, Bielefeld University. To appear in J. Pure Appl. Algebra. Available via www at “http://www.elsevier.nl/locate/jpaa/” -
*S.König and V.Mazorchuk*, An equivalence of two categories of $sl(n,\mathbb {C})$-modules. To appear in Algebras and Representation Theory. -
*S.König, I.H.Slungård and C.C.Xi*, Double centralizer properties, dominant dimension and tilting modules. J. Algebra 240 (2001), 393-412. - Olivier Mathieu,
*Classification of irreducible weight modules*, Ann. Inst. Fourier (Grenoble)**50**(2000), no. 2, 537–592 (English, with English and French summaries). MR**1775361** - Claus Michael Ringel,
*The category of modules with good filtrations over a quasi-hereditary algebra has almost split sequences*, Math. Z.**208**(1991), no. 2, 209–223. MR**1128706**, DOI 10.1007/BF02571521 - Wolfgang Soergel,
*Kategorie $\scr O$, perverse Garben und Moduln über den Koinvarianten zur Weylgruppe*, J. Amer. Math. Soc.**3**(1990), no. 2, 421–445 (German, with English summary). MR**1029692**, DOI 10.1090/S0894-0347-1990-1029692-5

## Additional Information

**Steffen König**- Affiliation: Department of Mathematics and Computer Science, University of Leicester, University Road, Leicester, LE1 7RH, England
- MR Author ID: 263193
- Email: sck5@mcs.le.ac.uk
**Volodymyr Mazorchuk**- Affiliation: Department of Mathematics, Uppsala University, Box 480, SE-75106, Uppsala, Sweden
- MR Author ID: 353912
- Email: mazor@math.uu.se
- Received by editor(s): July 11, 2000
- Received by editor(s) in revised form: October 3, 2001
- Published electronically: March 11, 2002
- Additional Notes: The first author was partially supported by the EC TMR network “Algebraic Lie Representations” grant no ERB FMRX-CT97-0100.

The second author was an Alexander von Humboldt fellow at Bielefeld University. - © Copyright 2002 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**354**(2002), 2725-2743 - MSC (2000): Primary 17B10, 16G10
- DOI: https://doi.org/10.1090/S0002-9947-02-02958-6
- MathSciNet review: 1895200