A Markov partition that reflects the geometry of a hyperbolic toral automorphism
Author:
Anthony Manning
Journal:
Trans. Amer. Math. Soc. 354 (2002), 2849-2863
MSC (2000):
Primary 37D20, 37B10; Secondary 28A80, 37B40
DOI:
https://doi.org/10.1090/S0002-9947-02-03003-9
Published electronically:
February 26, 2002
MathSciNet review:
1895206
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We show how to construct a Markov partition that reflects the geometrical action of a hyperbolic automorphism of the $n$-torus. The transition matrix is the transpose of the matrix induced by the automorphism in $u$-dimensional homology, provided this is non-negative. (Here $u$ denotes the expanding dimension.) That condition is satisfied, at least for some power of the original automorphism, under a certain non-degeneracy condition on the Galois group of the characteristic polynomial. The $(^n_u)$ rectangles are constructed by an iterated function system, and they resemble the product of the projection of a $u$-dimensional face of the unit cube onto the unstable subspace and the projection of minus the orthogonal $(n-u)$-dimensional face onto the stable subspace.
- Roy L. Adler and Benjamin Weiss, Similarity of automorphisms of the torus, Memoirs of the American Mathematical Society, No. 98, American Mathematical Society, Providence, R.I., 1970. MR 0257315
- Tim Bedford, Generating special Markov partitions for hyperbolic toral automorphisms using fractals, Ergodic Theory Dynam. Systems 6 (1986), no. 3, 325–333. MR 863197, DOI https://doi.org/10.1017/S0143385700003527
- Rufus Bowen, Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Lecture Notes in Mathematics, Vol. 470, Springer-Verlag, Berlin-New York, 1975. MR 0442989
- Rufus Bowen, On Axiom A diffeomorphisms, American Mathematical Society, Providence, R.I., 1978. Regional Conference Series in Mathematics, No. 35. MR 0482842
- Rufus Bowen, Markov partitions are not smooth, Proc. Amer. Math. Soc. 71 (1978), no. 1, 130–132. MR 474415, DOI https://doi.org/10.1090/S0002-9939-1978-0474415-8
- Robert L. Devaney, An introduction to chaotic dynamical systems, The Benjamin/Cummings Publishing Co., Inc., Menlo Park, CA, 1986. MR 811850
- Kenneth Falconer, Fractal geometry, John Wiley & Sons, Ltd., Chichester, 1990. Mathematical foundations and applications. MR 1102677
- John M. Franks, Homology and dynamical systems, CBMS Regional Conference Series in Mathematics, vol. 49, Published for the Conference Board of the Mathematical Sciences, Washington, D.C.; by the American Mathematical Society, Providence, R. I., 1982. MR 669378
- D. J. H. Garling, A course in Galois theory, Cambridge University Press, Cambridge, 1986. MR 876676
- P. J. Hilton and S. Wylie, Homology theory: An introduction to algebraic topology, Cambridge University Press, New York, 1960. MR 0115161
- Morris W. Hirsch, Expanding maps and transformation groups, Global analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968), Amer. Math. Soc., Providence, R.I., 1970, pp. 125–131. MR 0298701
- John E. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J. 30 (1981), no. 5, 713–747. MR 625600, DOI https://doi.org/10.1512/iumj.1981.30.30055
- Shunji Ito and Makoto Ohtsuki, Modified Jacobi-Perron algorithm and generating Markov partitions for special hyperbolic toral automorphisms, Tokyo J. Math. 16 (1993), no. 2, 441–472. MR 1247666, DOI https://doi.org/10.3836/tjm/1270128497
- Anatole Katok and Boris Hasselblatt, Introduction to the modern theory of dynamical systems, Encyclopedia of Mathematics and its Applications, vol. 54, Cambridge University Press, Cambridge, 1995. With a supplementary chapter by Katok and Leonardo Mendoza. MR 1326374
- R Kenyon, Self-similar tilings, Thesis, Princeton, 1990.
- Richard Kenyon, Self-replicating tilings, Symbolic dynamics and its applications (New Haven, CT, 1991) Contemp. Math., vol. 135, Amer. Math. Soc., Providence, RI, 1992, pp. 239–263. MR 1185093, DOI https://doi.org/10.1090/conm/135/1185093
- Richard Kenyon and Anatoly Vershik, Arithmetic construction of sofic partitions of hyperbolic toral automorphisms, Ergodic Theory Dynam. Systems 18 (1998), no. 2, 357–372. MR 1619562, DOI https://doi.org/10.1017/S0143385798100445
- Jeffrey C. Lagarias and Yang Wang, Self-affine tiles in ${\bf R}^n$, Adv. Math. 121 (1996), no. 1, 21–49. MR 1399601, DOI https://doi.org/10.1006/aima.1996.0045
- Stéphane Le Borgne, Un codage sofique des automorphismes hyperboliques du tore, C. R. Acad. Sci. Paris Sér. I Math. 323 (1996), no. 10, 1123–1128 (French, with English and French summaries). MR 1423437
- Ricardo Mañé, Ergodic theory and differentiable dynamics, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 8, Springer-Verlag, Berlin, 1987. Translated from the Portuguese by Silvio Levy. MR 889254
- Anthony Manning, Axiom ${\rm A}$ diffeomorphisms have rational zeta functions, Bull. London Math. Soc. 3 (1971), 215–220. MR 288786, DOI https://doi.org/10.1112/blms/3.2.215
- Anthony Manning, There are no new Anosov diffeomorphisms on tori, Amer. J. Math. 96 (1974), 422–429. MR 358865, DOI https://doi.org/10.2307/2373551
- Anthony Manning, Irrationality of linear combinations of eigenvectors, Proc. Indian Acad. Sci. Math. Sci. 105 (1995), no. 3, 269–271. MR 1369732, DOI https://doi.org/10.1007/BF02837192
- William S. Massey, A basic course in algebraic topology, Graduate Texts in Mathematics, vol. 127, Springer-Verlag, New York, 1991. MR 1095046
- R. Daniel Mauldin and S. C. Williams, Hausdorff dimension in graph directed constructions, Trans. Amer. Math. Soc. 309 (1988), no. 2, 811–829. MR 961615, DOI https://doi.org/10.1090/S0002-9947-1988-0961615-4
- Brenda Praggastis, Numeration systems and Markov partitions from self-similar tilings, Trans. Amer. Math. Soc. 351 (1999), no. 8, 3315–3349. MR 1615950, DOI https://doi.org/10.1090/S0002-9947-99-02360-0
- D. Ruelle, One-dimensional Gibbs states and Axiom A diffeomorphisms, J. Differential Geom. 25 (1987), no. 1, 117–137. MR 873458
- E. Seneta, Nonnegative matrices and Markov chains, 2nd ed., Springer Series in Statistics, Springer-Verlag, New York, 1981. MR 719544
- Ja. G. Sinaĭ, Markov partitions and U-diffeomorphisms, Funkcional. Anal. i Priložen 2 (1968), no. 1, 64–89 (Russian). MR 0233038
- S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 747–817. MR 228014, DOI https://doi.org/10.1090/S0002-9904-1967-11798-1
- Peter Walters, An introduction to ergodic theory, Graduate Texts in Mathematics, vol. 79, Springer-Verlag, New York-Berlin, 1982. MR 648108
- R. F. Williams, Classification of subshifts of finite type, Ann. of Math. (2) 98 (1973), 120–153; errata, ibid. (2) 99 (1974), 380–381. MR 331436, DOI https://doi.org/10.2307/1970908
Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 37D20, 37B10, 28A80, 37B40
Retrieve articles in all journals with MSC (2000): 37D20, 37B10, 28A80, 37B40
Additional Information
Anthony Manning
Affiliation:
Mathematics Institute, University of Warwick, Coventry, CV4 7AL, UK
Email:
akm@maths.warwick.ac.uk
Keywords:
Markov partition,
hyperbolic toral automorphism,
iterated function system
Received by editor(s):
September 4, 2001
Published electronically:
February 26, 2002
Article copyright:
© Copyright 2002
American Mathematical Society