Non-crossing cumulants of type B

Authors:
Philippe Biane, Frederick Goodman and Alexandru Nica

Journal:
Trans. Amer. Math. Soc. **355** (2003), 2263-2303

MSC (2000):
Primary 46L54, 05E15, 20F55

DOI:
https://doi.org/10.1090/S0002-9947-03-03196-9

Published electronically:
January 28, 2003

MathSciNet review:
1973990

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We establish connections between the lattices of non-crossing partitions of type B introduced by V. Reiner, and the framework of the free probability theory of D. Voiculescu. Lattices of non-crossing partitions (of type A, up to now) have played an important role in the combinatorics of free probability, primarily via the non-crossing cumulants of R. Speicher. Here we introduce the concept of *non-crossing cumulant of type B;* the inspiration for its definition is found by looking at an operation of “restricted convolution of multiplicative functions”, studied in parallel for functions on symmetric groups (in type A) and on hyperoctahedral groups (in type B). The non-crossing cumulants of type B live in an appropriate framework of “non-commutative probability space of type B”, and are closely related to a type B analogue for the R-transform of Voiculescu (which is the free probabilistic counterpart of the Fourier transform). By starting from a condition of “vanishing of mixed cumulants of type B”, we obtain an analogue of type B for the concept of free independence for random variables in a non-commutative probability space.

- D. Bessis. The dual braid monoid, preprint, January 2002 (arXiv:math.GR/0101158).
- Philippe Biane,
*Minimal factorizations of a cycle and central multiplicative functions on the infinite symmetric group*, J. Combin. Theory Ser. A**76**(1996), no. 2, 197–212. MR**1416014**, DOI https://doi.org/10.1006/jcta.1996.0101 - Philippe Biane,
*Some properties of crossings and partitions*, Discrete Math.**175**(1997), no. 1-3, 41–53. MR**1475837**, DOI https://doi.org/10.1016/S0012-365X%2896%2900139-2 - M. Bozejko and R. Speicher. $\psi$-independent and symmetrized white noises, in Quantum Probability and Related Topics (L. Accardi editor), QP-PQ, VI, World Scientific, Singapore, (1991), 219-236.
- Thomas Brady,
*A partial order on the symmetric group and new $K(\pi ,1)$’s for the braid groups*, Adv. Math.**161**(2001), no. 1, 20–40. MR**1857934**, DOI https://doi.org/10.1006/aima.2001.1986 - T. Brady and C. Watt. $K( \pi , 1)$’s for Artin groups of finite type, preprint, February 2001 (arXiv:math.GR/0102078).
- Peter Doubilet, Gian-Carlo Rota, and Richard Stanley,
*On the foundations of combinatorial theory. VI. The idea of generating function*, Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, Calif., 1970/1971) Univ. California Press, Berkeley, Calif., 1972, pp. 267–318. MR**0403987** - Pierre de la Harpe,
*Topics in geometric group theory*, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 2000. MR**1786869** - James E. Humphreys,
*Reflection groups and Coxeter groups*, Cambridge Studies in Advanced Mathematics, vol. 29, Cambridge University Press, Cambridge, 1990. MR**1066460** - Bernadette Krawczyk and Roland Speicher,
*Combinatorics of free cumulants*, J. Combin. Theory Ser. A**90**(2000), no. 2, 267–292. MR**1757277**, DOI https://doi.org/10.1006/jcta.1999.3032 - G. Kreweras,
*Sur les partitions non croisées d’un cycle*, Discrete Math.**1**(1972), no. 4, 333–350 (French). MR**309747**, DOI https://doi.org/10.1016/0012-365X%2872%2990041-6 - Alexandru Nica and Roland Speicher,
*A “Fourier transform” for multiplicative functions on non-crossing partitions*, J. Algebraic Combin.**6**(1997), no. 2, 141–160. MR**1436532**, DOI https://doi.org/10.1023/A%3A1008643104945 - Alexandru Nica and Roland Speicher,
*On the multiplication of free $N$-tuples of noncommutative random variables*, Amer. J. Math.**118**(1996), no. 4, 799–837. MR**1400060** - A. Nica and R. Speicher. The combinatorics of free probability, Preliminary version, December 1999. Lecture Notes of Centre Émile Borel, the Henri Poincaré Institute, Paris, France.
- A. Nica, D. Shlyakhtenko, and R. Speicher. Operator-valued distributions I. Characterizations of freeness, International Mathematics Research Notices 29 (2002), 1509-1538.
- Victor Reiner,
*Non-crossing partitions for classical reflection groups*, Discrete Math.**177**(1997), no. 1-3, 195–222. MR**1483446**, DOI https://doi.org/10.1016/S0012-365X%2896%2900365-2 - Roland Speicher,
*Multiplicative functions on the lattice of noncrossing partitions and free convolution*, Math. Ann.**298**(1994), no. 4, 611–628. MR**1268597**, DOI https://doi.org/10.1007/BF01459754 - R. Speicher. Combinatorial theory of the free product with amalgamation and operator-valued free probability theory, Memoirs of the Amer. Math. Soc. 132 (1998), no. 627.
- Dan Voiculescu,
*Addition of certain noncommuting random variables*, J. Funct. Anal.**66**(1986), no. 3, 323–346. MR**839105**, DOI https://doi.org/10.1016/0022-1236%2886%2990062-5 - D. V. Voiculescu, K. J. Dykema, and A. Nica,
*Free random variables*, CRM Monograph Series, vol. 1, American Mathematical Society, Providence, RI, 1992. A noncommutative probability approach to free products with applications to random matrices, operator algebras and harmonic analysis on free groups. MR**1217253**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2000):
46L54,
05E15,
20F55

Retrieve articles in all journals with MSC (2000): 46L54, 05E15, 20F55

Additional Information

**Philippe Biane**

Affiliation:
Département de Mathématiques et Applications de l’Ecole Normale Supérieure, 45 rue d’Ulm, 75230 Paris, France

Email:
Philippe.Biane@ens.fr

**Frederick Goodman**

Affiliation:
Department of Mathematics, University of Iowa, Iowa City, Iowa 52242

Email:
goodman@math.uiowa.edu

**Alexandru Nica**

Affiliation:
Department of Pure Mathematics, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada

Email:
anica@math.uwaterloo.ca

Received by editor(s):
May 15, 2002

Received by editor(s) in revised form:
September 18, 2002

Published electronically:
January 28, 2003

Article copyright:
© Copyright 2003
American Mathematical Society