Approximations for Gabor and wavelet frames
HTML articles powered by AMS MathViewer
- by Deguang Han
- Trans. Amer. Math. Soc. 355 (2003), 3329-3342
- DOI: https://doi.org/10.1090/S0002-9947-03-03047-2
- Published electronically: April 24, 2003
- PDF | Request permission
Abstract:
Let $\psi$ be a frame vector under the action of a collection of unitary operators $\mathcal U$. Motivated by the recent work of Frank, Paulsen and Tiballi and some application aspects of Gabor and wavelet frames, we consider the existence and uniqueness of the best approximation by normalized tight frame vectors. We prove that for any frame induced by a projective unitary representation for a countable discrete group, the best normalized tight frame (NTF) approximation exists and is unique. Therefore it applies to Gabor frames (including Gabor frames for subspaces) and frames induced by translation groups. Similar results hold for semi-orthogonal wavelet frames.References
- John G. Aiken, John A. Erdos, and Jerome A. Goldstein, Unitary approximation of positive operators, Illinois J. Math. 24 (1980), no. 1, 61–72. MR 550652
- J. G. Aiken, J. A. Erdos and J. A. Goldstein, On Löwdin orthogonalization, Internat. J. Quantum Chem., 18 (1980), 1101–1108.
- Radu Balan, Equivalence relations and distances between Hilbert frames, Proc. Amer. Math. Soc. 127 (1999), no. 8, 2353–2366. MR 1600096, DOI 10.1090/S0002-9939-99-04826-1
- J. Benedetto and M. Fickkus, Finite tight frames, Adv. in Computational Mathematics, 18 (2003), 357–385.
- John J. Benedetto, Christopher Heil, and David F. Walnut, Gabor systems and the Balian-Low theorem, Gabor analysis and algorithms, Appl. Numer. Harmon. Anal., Birkhäuser Boston, Boston, MA, 1998, pp. 85–122. MR 1601111
- John J. Benedetto and Oliver M. Treiber, Wavelet frames: multiresolution analysis and extension principles, Wavelet transforms and time-frequency signal analysis, Appl. Numer. Harmon. Anal., Birkhäuser Boston, Boston, MA, 2001, pp. 3–36. MR 1826007
- Peter G. Casazza, The art of frame theory, Taiwanese J. Math. 4 (2000), no. 2, 129–201. MR 1757401, DOI 10.11650/twjm/1500407227
- P. Casazza, Modern tools for Weyl-Heisenberg (Gabor) frame theory, Adv. Imag. Elect. Phys., 115 (2001), 1–127.
- P. Casazza and J. Kova$\check {c}$evi$\acute {c}$, Uniform tight frames with erasures, preprint.
- Ole Christensen, Baiqiao Deng, and Christopher Heil, Density of Gabor frames, Appl. Comput. Harmon. Anal. 7 (1999), no. 3, 292–304. MR 1721808, DOI 10.1006/acha.1999.0271
- Xingde Dai and David R. Larson, Wandering vectors for unitary systems and orthogonal wavelets, Mem. Amer. Math. Soc. 134 (1998), no. 640, viii+68. MR 1432142, DOI 10.1090/memo/0640
- Ingrid Daubechies, Ten lectures on wavelets, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 61, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992. MR 1162107, DOI 10.1137/1.9781611970104
- Ingrid Daubechies, H. J. Landau, and Zeph Landau, Gabor time-frequency lattices and the Wexler-Raz identity, J. Fourier Anal. Appl. 1 (1995), no. 4, 437–478. MR 1350701, DOI 10.1007/s00041-001-4018-3
- Hans G. Feichtinger and Thomas Strohmer (eds.), Gabor analysis and algorithms, Applied and Numerical Harmonic Analysis, Birkhäuser Boston, Inc., Boston, MA, 1998. Theory and applications. MR 1601119, DOI 10.1007/978-1-4612-2016-9
- Michael Frank, Vern I. Paulsen, and Terry R. Tiballi, Symmetric approximation of frames and bases in Hilbert spaces, Trans. Amer. Math. Soc. 354 (2002), no. 2, 777–793. MR 1862567, DOI 10.1090/S0002-9947-01-02838-0
- J. P. Gabardo and D. Han, Frame representations for group-like unitary operator systems, J. Operator Theory, to appear.
- Jean-Pierre Gabardo and Deguang Han, Subspace Weyl-Heisenberg frames, J. Fourier Anal. Appl. 7 (2001), no. 4, 419–433. MR 1836821, DOI 10.1007/BF02514505
- J. P. Gabardo and D. Han, Weyl-Heisenberg dual frames and operator algebras, preprint.
- J. P. Gabardo, D. Han and D. Larson, Gabor frames and operator algebras, Wavelet Applications in Signal and Image Processing VIII, Proc. SPIE., 4119 (2000), 337–345.
- D. Gabor, Theory of Communication, J. Inst. Elec. Eng. (London) 93 (1946), 429–457.
- Jerome A. Goldstein and Mel Levy, Linear algebra and quantum chemistry, Amer. Math. Monthly 98 (1991), no. 8, 710–718. MR 1130681, DOI 10.2307/2324422
- Deguang Han, Wandering vectors for irrational rotation unitary systems, Trans. Amer. Math. Soc. 350 (1998), no. 1, 309–320. MR 1451604, DOI 10.1090/S0002-9947-98-02065-0
- Deguang Han and David R. Larson, Frames, bases and group representations, Mem. Amer. Math. Soc. 147 (2000), no. 697, x+94. MR 1686653, DOI 10.1090/memo/0697
- D. Han and Y. Wang, Lattice tiling and the Weyl-Heisenberg frames, Geometric and Functional Analysis, 11 (2001), 742–758.
- Eugenio Hernández and Guido Weiss, A first course on wavelets, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1996. With a foreword by Yves Meyer. MR 1408902, DOI 10.1201/9781420049985
- A. J. E. M. Janssen and Thomas Strohmer, Characterization and computation of canonical tight windows for Gabor frames, J. Fourier Anal. Appl. 8 (2002), no. 1, 1–28. MR 1882363, DOI 10.1007/s00041-002-0001-x
- Alfred Rosenblatt, Sur les points singuliers des équations différentielles, C. R. Acad. Sci. Paris 209 (1939), 10–11 (French). MR 85
- D. R. Larson, Von Neumann algebras and wavelets, Operator algebras and applications (Samos, 1996) NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., vol. 495, Kluwer Acad. Publ., Dordrecht, 1997, pp. 267–312. MR 1462685
- P. -O. Löwdin, On the nonorthogonality problem, Adv. Quantum Chem., 5(1970), 185–199.
- Marc A. Rieffel, von Neumann algebras associated with pairs of lattices in Lie groups, Math. Ann. 257 (1981), no. 4, 403–418. MR 639575, DOI 10.1007/BF01465863
- Amos Ron and Zuowei Shen, Weyl-Heisenberg frames and Riesz bases in $L_2(\mathbf R^d)$, Duke Math. J. 89 (1997), no. 2, 237–282. MR 1460623, DOI 10.1215/S0012-7094-97-08913-4
- Jayakumar Ramanathan and Tim Steger, Incompleteness of sparse coherent states, Appl. Comput. Harmon. Anal. 2 (1995), no. 2, 148–153. MR 1325536, DOI 10.1006/acha.1995.1010
- V. S. Varadarajan, Geometry of quantum theory, 2nd ed., Springer-Verlag, New York, 1985. MR 805158
Bibliographic Information
- Deguang Han
- Affiliation: Department of Mathematics, University of Central Florida, Orlando, Florida 38216
- Email: dhan@pegasus.cc.ucf.edu
- Received by editor(s): February 19, 2002
- Published electronically: April 24, 2003
- © Copyright 2003 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 355 (2003), 3329-3342
- MSC (2000): Primary 42C15, 46C05, 47B10
- DOI: https://doi.org/10.1090/S0002-9947-03-03047-2
- MathSciNet review: 1974690