Stability of infinite-dimensional sampled-data systems

Authors:
Hartmut Logemann, Richard Rebarber and Stuart Townley

Journal:
Trans. Amer. Math. Soc. **355** (2003), 3301-3328

MSC (2000):
Primary 34G10, 47A55, 47D06, 93C25, 93C57, 93D15

DOI:
https://doi.org/10.1090/S0002-9947-03-03142-8

Published electronically:
April 25, 2003

MathSciNet review:
1974689

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Suppose that a static-state feedback stabilizes a continuous-time linear infinite-dimensional control system. We consider the following question: if we construct a sampled-data controller by applying an idealized sample-and-hold process to a continuous-time stabilizing feedback, will this sampled-data controller stabilize the system for all sufficiently small sampling times? Here the state space and the control space are Hilbert spaces, the system is of the form , where is the generator of a strongly continuous semigroup on , and the continuous time feedback is . The answer to the above question is known to be ``yes'' if and are finite-dimensional spaces. In the infinite-dimensional case, if is not compact, then it is easy to find counterexamples. Therefore, we restrict attention to compact feedback. We show that the answer to the above question is ``yes'', if is a bounded operator from into . Moreover, if is unbounded, we show that the answer ``yes'' remains correct, provided that the semigroup generated by is analytic. We use the theory developed for static-state feedback to obtain analogous results for dynamic-output feedback control.

**1.**T. Chen and B. Francis, Input-output stability of sampled-data systems,*IEEE Trans. Automat. Control***36**(1991), pp. 50-58. MR**91j:93094****2.**T. Chen and B. Francis,*Optimal Sampled-Data Control Systems*, Springer, London, 1995. MR**99a:93001****3.**R. F. Curtain and H. J. Zwart,*An Introduction to Infinite-Dimensional Linear Systems Theory*, Springer-Verlag, New York, 1995. MR**96i:93001****4.**N. Dunford and J. Schwartz,*Linear Operators, Part II*, John Wiley and Sons, New York, 1963. MR**32:6181****5.**K.-J. Engel and R. Nagel,*One-Parameter Semigroups for Linear Evolution Equations*, Graduate Texts in Mathematics, No. 194, Springer-Verlag, New York, 2000. MR**2000i:47075****6.**G. F. Franklin, J. D. Powell and M. Workman,*Digital Control of Dynamic Systems*, 3rd edition, Addison Wesley, Menlo Park, 1998.**7.**R. Kalman, B. Ho and K. Narendra, Controllability of linear dynamical systems,*Contributions to Differential Equations***1**(1963), pp. 188-213. MR**27:5012****8.**T. Kato,*Perturbation Theory for Linear Operators*, 2nd edition, Springer-Verlag, Berlin, 1980. MR**96a:47025****9.**H. Logemann, Stability and stabilizability of linear infinite-dimensional discrete-time systems,*IMA J. of Mathematical Control & Information***9**(1992), pp. 255-263. MR**94c:93094****10.**I. Lasiecka and R. Triggiani, Stabilization and structural assignment of Dirichlet boundary feedback parabolic equations,*SIAM J. Control***21**(1983), pp. 766-803. MR**85i:93028****11.**I. Lasiecka and R. Triggiani, The regulator problem for parabolic equations with Dirichlet boundary control, Part I: Riccati's feedback synthesis and regularity of optimal solution,*Appl. Math. Optim.***16**(1987), pp. 147-168. MR**88g:93063a****12.**I. Lasiecka and R. Triggiani, The regulator problem for parabolic equations with Dirichlet boundary control, Part II: Galerkin approximation,*Appl. Math. Optim.***16**(1987), pp. 187-216. MR**88g:93063b****13.**J.-L. Lions and E. Magenes,*Non-homogeneous Boundary Value Problems and Applications*, Vols. 1 and 2, Springer, Berlin, 1972. MR**50:2670**; MR**50:2671****14.**A. Pazy,*Semigroups of Linear Operators and Applications to Partial Differential Equations*, Applied Mathematical Sciences**44**, Springer-Verlag, New York, 1983. MR**85g:47061****15.**R. Rebarber and S. Townley, Stabilization of distributed parameter systems by piecewise polynomial control,*IEEE Trans. Automat. Control***42**(1997), pp. 1254-1257. MR**98j:93073****16.**R. Rebarber and S. Townley, Generalized sampled data feedback control of distributed parameter systems,*Systems & Control Letters***34**(1998), pp. 229-240. MR**99f:93081****17.**R. Rebarber and S. Townley, Non-robustness of closed-loop stability for infinite-dimensional systems under sample and hold,*IEEE Trans. Automat. Control***47**(2002), pp. 1381-1385.**18.**I. G. Rosen and C. Wang, On stabilizability and sampling for infinite-dimensional systems,*IEEE Trans. Automat. Control***37**(1992), pp. 1653-1656. MR**93g:93077****19.**E. D. Sontag,*Mathematical Control Theory*, 2nd edition, Springer-Verlag, New York, 1998. MR**99k:93001****20.**T. J. Tarn, J. R. Zavgren and X. M. Zeng, Stabilization of infinite-dimensional systems with periodic gains and sampled output,*Automatica*,**24**(1988), pp. 95-99. MR**89d:93087****21.**G. Weiss, Admissibility of unbounded control operators,*SIAM J. Control & Optim.***27**(1989), pp. 527-545. MR**90c:93060****22.**Y. Yamamoto, A function space approach to sampled data control systems and tracking problems,*IEEE Trans. Automat. Control***39**(1994), pp. 703-713. MR**95b:93116****23.**J. Zabczyk. On decomposition of generators,*SIAM J. Control & Optim.***16**(1978), pp. 523-534 (erratum in*SIAM J. Control & Optim.***18**(1980), p. 325). MR**58:23757**; MR**81c:47044**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2000):
34G10,
47A55,
47D06,
93C25,
93C57,
93D15

Retrieve articles in all journals with MSC (2000): 34G10, 47A55, 47D06, 93C25, 93C57, 93D15

Additional Information

**Hartmut Logemann**

Affiliation:
Department of Mathematical Sciences, University of Bath, Bath BA2 7AY, United Kingdom

Email:
hl@maths.bath.ac.uk

**Richard Rebarber**

Affiliation:
Department of Mathematics and Statistics, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0323

Email:
rrebarbe@math.unl.edu

**Stuart Townley**

Affiliation:
School of Mathematical Sciences, University of Exeter, Exeter, EX4 4QE, United Kingdom

Email:
townley@maths.ex.ac.uk

DOI:
https://doi.org/10.1090/S0002-9947-03-03142-8

Received by editor(s):
December 21, 2000

Received by editor(s) in revised form:
February 21, 2002

Published electronically:
April 25, 2003

Additional Notes:
This work was supported by NATO (Grant CRG 950179) and by the National Science Foundation (Grant DMS-9623392).

Article copyright:
© Copyright 2003
American Mathematical Society