Clustering of critical points in Lefschetz fibrations and the symplectic Szpiro inequality
HTML articles powered by AMS MathViewer
- by V. Braungardt and D. Kotschick
- Trans. Amer. Math. Soc. 355 (2003), 3217-3226
- DOI: https://doi.org/10.1090/S0002-9947-03-03290-2
- Published electronically: April 24, 2003
- PDF | Request permission
Abstract:
We prove upper bounds for the number of critical points in semi- stable symplectic Lefschetz fibrations. We also obtain a new lower bound for the number of nonseparating vanishing cycles in Lefschetz pencils and reprove the known lower bounds for the commutator lengths of Dehn twists.References
- J. Amorós, F. Bogomolov, L. Katzarkov, and T. Pantev, Symplectic Lefschetz fibrations with arbitrary fundamental groups, J. Differential Geom. 54 (2000), no. 3, 489–545. With an appendix by Ivan Smith. MR 1823313, DOI 10.4310/jdg/1214339791
- Arnaud Beauville, Complex algebraic surfaces, London Mathematical Society Lecture Note Series, vol. 68, Cambridge University Press, Cambridge, 1983. Translated from the French by R. Barlow, N. I. Shepherd-Barron and M. Reid. MR 732439
- A. Beauville, The Szpiro inequality for higher genus fibrations, Preprint arXiv:math. AG/0109080.
- F. Bogomolov, L. Katzarkov and T. Pantev, Hyperelliptic Szpiro inequality, Preprint arXiv:math.GT/0106212.
- S. K. Donaldson and I. Smith, Lefschetz pencils and the canonical class for symplectic $4$-manifolds, Preprint arXiv:math.SG/0012067.
- H. Endo and D. Kotschick, Bounded cohomology and non-uniform perfection of mapping class groups, Invent. Math. 144 (2001), no. 1, 169–175. MR 1821147, DOI 10.1007/s002220100128
- Robert E. Gompf and András I. Stipsicz, $4$-manifolds and Kirby calculus, Graduate Studies in Mathematics, vol. 20, American Mathematical Society, Providence, RI, 1999. MR 1707327, DOI 10.1090/gsm/020
- M. Korkmaz, Commutators in mapping class groups and bounded cohomology, Preprint arXiv:math.GT/0012162.
- D. Kotschick, Signatures, monopoles and mapping class groups, Math. Res. Lett. 5 (1998), no. 1-2, 227–234. MR 1617905, DOI 10.4310/MRL.1998.v5.n2.a9
- Tian-Jun Li, Symplectic Parshin-Arakelov inequality, Internat. Math. Res. Notices 18 (2000), 941–954. MR 1792283, DOI 10.1155/S1073792800000490
- Ai-Ko Liu, Some new applications of general wall crossing formula, Gompf’s conjecture and its applications, Math. Res. Lett. 3 (1996), no. 5, 569–585. MR 1418572, DOI 10.4310/MRL.1996.v3.n5.a1
- Ivan Smith, Geometric monodromy and the hyperbolic disc, Q. J. Math. 52 (2001), no. 2, 217–228. MR 1838364, DOI 10.1093/qjmath/52.2.217
- I. Smith, Serre-Taubes duality for pseudoholomorphic curves, Preprint arXiv:math. SG/0106220.
- András I. Stipsicz, On the number of vanishing cycles in Lefschetz fibrations, Math. Res. Lett. 6 (1999), no. 3-4, 449–456. MR 1713143, DOI 10.4310/MRL.1999.v6.n4.a7
- András I. Stipsicz, Singular fibers in Lefschetz fibrations on manifolds with $b_2^+=1$, Topology Appl. 117 (2002), no. 1, 9–21. MR 1874001, DOI 10.1016/S0166-8641(00)00105-X
- L. Szpiro, Discriminant et conducteur des courbes elliptiques, Astérisque 183 (1990), 7–18 (French). Séminaire sur les Pinceaux de Courbes Elliptiques (Paris, 1988). MR 1065151
- Clifford H. Taubes, $\textrm {SW}\Rightarrow \textrm {Gr}$: from the Seiberg-Witten equations to pseudo-holomorphic curves, J. Amer. Math. Soc. 9 (1996), no. 3, 845–918. MR 1362874, DOI 10.1090/S0894-0347-96-00211-1
Bibliographic Information
- V. Braungardt
- Affiliation: Mathematisches Institut, Ludwig-Maximilians-Universität München, Theresien- strasse 39, 80333 München, Germany
- Email: Volker.Braungardt@mathematik.uni-muenchen.de
- D. Kotschick
- Affiliation: Mathematisches Institut, Ludwig-Maximilians-Universität München, Theresien- strasse 39, 80333 München, Germany
- MR Author ID: 267229
- Email: dieter@member.ams.org
- Received by editor(s): September 10, 2002
- Published electronically: April 24, 2003
- Additional Notes: Support from the Deutsche Forschungsgemeinschaft is gratefully acknowledged. The authors are members of the European Differential Geometry Endeavour (EDGE), Research Training Network HPRN-CT-2000-00101, supported by The European Human Potential Programme
- © Copyright 2003 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 355 (2003), 3217-3226
- MSC (2000): Primary 57R17, 57R57, 14H10
- DOI: https://doi.org/10.1090/S0002-9947-03-03290-2
- MathSciNet review: 1974683