Homology of pseudodifferential operators on manifolds with fibered cusps
HTML articles powered by AMS MathViewer
- by Robert Lauter and Sergiu Moroianu
- Trans. Amer. Math. Soc. 355 (2003), 3009-3046
- DOI: https://doi.org/10.1090/S0002-9947-03-03294-X
- Published electronically: April 24, 2003
- PDF | Request permission
Abstract:
The Hochschild homology of the algebra of pseudodifferential operators on a manifold with fibered cusps, introduced by Mazzeo and Melrose, is studied and computed using the approach of Brylinski and Getzler. One of the main technical tools is a new convergence criterion for tri-filtered half-plane spectral sequences. Using trace-like functionals that generate the $0$-dimensional Hochschild cohomology groups, the index of a fully elliptic fibered cusp operator is expressed as the sum of a local contribution of Atiyah-Singer type and a global term on the boundary. We announce a result relating this boundary term to the adiabatic limit of the eta invariant in a particular case.References
- B. Ammann, R. Lauter, V. Nistor, and A. Vasy. Complex powers and non-compact manifolds, math.OA/0211305, preprint, November 2002.
- M. Benameur and V. Nistor, Homology of complete symbols and noncommutative geometry, Landsman, N. P. (ed.) et al., Quantization of singular symplectic quotients, Basel, Birkhäuser. Prog. Math. 198 (2001), 21–46.
- Jean-Luc Brylinski, A differential complex for Poisson manifolds, J. Differential Geom. 28 (1988), no. 1, 93–114. MR 950556
- Jean-Luc Brylinski and Ezra Getzler, The homology of algebras of pseudodifferential symbols and the noncommutative residue, $K$-Theory 1 (1987), no. 4, 385–403. MR 920951, DOI 10.1007/BF00539624
- Bogdan Bucicovschi, An extension of the work of V. Guillemin on complex powers and zeta functions of elliptic pseudodifferential operators, Proc. Amer. Math. Soc. 127 (1999), no. 10, 3081–3090. MR 1605924, DOI 10.1090/S0002-9939-99-04867-4
- Alain Connes, Noncommutative geometry, Academic Press, Inc., San Diego, CA, 1994. MR 1303779
- Alain Connes, Gravity coupled with matter and the foundation of non-commutative geometry, Comm. Math. Phys. 182 (1996), no. 1, 155–176. MR 1441908, DOI 10.1007/BF02506388
- H. O. Cordes, On a class of $C^{\ast }$-algebras, Math. Ann. 170 (1967), 283–313. MR 209853, DOI 10.1007/BF01350606
- Yuri V. Egorov and Bert-Wolfgang Schulze, Pseudo-differential operators, singularities, applications, Operator Theory: Advances and Applications, vol. 93, Birkhäuser Verlag, Basel, 1997. MR 1443430, DOI 10.1007/978-3-0348-8900-1
- C. L. Epstein, R. B. Melrose, and G. A. Mendoza, Resolvent of the Laplacian on strictly pseudoconvex domains, Acta Math. 167 (1991), no. 1-2, 1–106. MR 1111745, DOI 10.1007/BF02392446
- Bernhard Gramsch, Relative Inversion in der Störungstheorie von Operatoren und $\Psi$-Algebren, Math. Ann. 269 (1984), no. 1, 27–71 (German). MR 756775, DOI 10.1007/BF01455995
- Victor Guillemin, A new proof of Weyl’s formula on the asymptotic distribution of eigenvalues, Adv. in Math. 55 (1985), no. 2, 131–160. MR 772612, DOI 10.1016/0001-8708(85)90018-0
- R. Lauter and S. Moroianu. An index formula on manifolds with fibered cusp ends, preprint, 2002.
- R. Lauter and S. Moroianu, Homology of pseudo-differential operators on manifolds with fibered boundaries, Journal Reine Angew. Math. 547 (2002), 207–234.
- Robert Lauter and Sergiu Moroianu, The index of cusp operators on manifolds with corners, Ann. Global Anal. Geom. 21 (2002), no. 1, 31–49. MR 1889248, DOI 10.1023/A:1014283604496
- R. Lauter and S. Moroianu, On the index formula of Melrose and Nistor. Preprint Nr. 3, IMAR, Bucharest, March 2000.
- Robert Lauter and Sergiu Moroianu, Fredholm theory for degenerate pseudodifferential operators on manifolds with fibered boundaries, Comm. Partial Differential Equations 26 (2001), no. 1-2, 233–283. MR 1842432, DOI 10.1081/PDE-100001754
- R. Lauter and V. Nistor, Analysis of geometric operators on open manifolds: a groupoid approach, In N.P. Landsman, M. Pflaum, and M. Schlichenmaier, ed., Quantization of Singular Symplectic Quotients, vol. 198 of Progress in Mathematics, pp. 181–229. Birkhäuser, Basel - Boston - Berlin, 2001.
- Matthias Lesch and Markus J. Pflaum, Traces on algebras of parameter dependent pseudodifferential operators and the eta-invariant, Trans. Amer. Math. Soc. 352 (2000), no. 11, 4911–4936. MR 1661258, DOI 10.1090/S0002-9947-00-02480-6
- Jean-Louis Loday, Cyclic homology, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 301, Springer-Verlag, Berlin, 1992. Appendix E by María O. Ronco. MR 1217970, DOI 10.1007/978-3-662-21739-9
- Frank Mantlik, Norm closure and extension of the symbolic calculus for the cone algebra, Ann. Global Anal. Geom. 13 (1995), no. 4, 339–376. MR 1364008, DOI 10.1007/BF00773405
- Rafe Mazzeo, Elliptic theory of differential edge operators. I, Comm. Partial Differential Equations 16 (1991), no. 10, 1615–1664. MR 1133743, DOI 10.1080/03605309108820815
- Rafe Mazzeo and Richard B. Melrose, Pseudodifferential operators on manifolds with fibred boundaries, Asian J. Math. 2 (1998), no. 4, 833–866. Mikio Sato: a great Japanese mathematician of the twentieth century. MR 1734130, DOI 10.4310/AJM.1998.v2.n4.a9
- John McCleary, User’s guide to spectral sequences, Mathematics Lecture Series, vol. 12, Publish or Perish, Inc., Wilmington, DE, 1985. MR 820463
- R. B. Melrose, Analysis on manifolds with corners, in preparation.
- Richard B. Melrose, Pseudodifferential operators, corners and singular limits, Proceedings of the International Congress of Mathematicians, Vol. I, II (Kyoto, 1990) Math. Soc. Japan, Tokyo, 1991, pp. 217–234. MR 1159214
- Richard B. Melrose, The Atiyah-Patodi-Singer index theorem, Research Notes in Mathematics, vol. 4, A K Peters, Ltd., Wellesley, MA, 1993. MR 1348401, DOI 10.1016/0377-0257(93)80040-i
- Richard B. Melrose, Spectral and scattering theory for the Laplacian on asymptotically Euclidian spaces, Spectral and scattering theory (Sanda, 1992) Lecture Notes in Pure and Appl. Math., vol. 161, Dekker, New York, 1994, pp. 85–130. MR 1291640
- Richard B. Melrose, The eta invariant and families of pseudodifferential operators, Math. Res. Lett. 2 (1995), no. 5, 541–561. MR 1359962, DOI 10.4310/MRL.1995.v2.n5.a3
- Richard B. Melrose, Geometric scattering theory, Stanford Lectures, Cambridge University Press, Cambridge, 1995. MR 1350074
- Richard B. Melrose, Fibrations, compactifications and algebras of pseudodifferential operators, Partial differential equations and mathematical physics (Copenhagen, 1995; Lund, 1995) Progr. Nonlinear Differential Equations Appl., vol. 21, Birkhäuser Boston, Boston, MA, 1996, pp. 246–261. MR 1380995, DOI 10.1007/978-1-4612-0775-7_{1}6
- R. B. Melrose, Geometric optics and the bottom of the spectrum, In F. Colombini and N. Lerner, editors, Geometrical optics and related topics, volume 32 of Progress in nonlinear differential equations and their applications, Birkhäuser, Basel - Boston - Berlin (1997).
- R. B. Melrose and V. Nistor, Higher index and $\eta$-invariants for suspended algebras of pseudodifferential operators, unfinished manuscript.
- R. B. Melrose and V. Nistor, Homology of pseudodifferential operators I. Manifolds with boundary, to appear in Amer. Math. J., Preprint, May 1996.
- S. Moroianu, Higher residues on the algebra of adiabatic pseudodifferential operators, Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, Massachusetts (1999).
- Werner Müller, Manifolds with cusps of rank one, Lecture Notes in Mathematics, vol. 1244, Springer-Verlag, Berlin, 1987. Spectral theory and $L^2$-index theorem. MR 891654, DOI 10.1007/BFb0077660
- R. Nest and E. Schrohe, Hochschild homology of Boutet de Monvel’s algebra, in preparation.
- Tom M. W. Nye and Michael A. Singer, An $L^2$-index theorem for Dirac operators on $S^1\times \mathbf R^3$, J. Funct. Anal. 177 (2000), no. 1, 203–218. MR 1789949, DOI 10.1006/jfan.2000.3648
- Victor Nistor, Groupoids and the integration of Lie algebroids, J. Math. Soc. Japan 52 (2000), no. 4, 847–868. MR 1774632, DOI 10.2969/jmsj/05240847
- Stephan Rempel and Bert-Wolfgang Schulze, Complete Mellin and Green symbolic calculus in spaces with conormal asymptotics, Ann. Global Anal. Geom. 4 (1986), no. 2, 137–223. MR 910551, DOI 10.1007/BF00129908
- A. R. Collar, On the reciprocation of certain matrices, Proc. Roy. Soc. Edinburgh 59 (1939), 195–206. MR 8, DOI 10.1017/S0370164600012281
- B. Vaillant, Index- and spectral theory for manifolds with generalized fibered cusps, Ph.D. thesis, University of Bonn (2001).
- Mariusz Wodzicki, Cyclic homology of differential operators, Duke Math. J. 54 (1987), no. 2, 641–647. MR 899408, DOI 10.1215/S0012-7094-87-05426-3
- Mariusz Wodzicki, Noncommutative residue. I. Fundamentals, $K$-theory, arithmetic and geometry (Moscow, 1984–1986) Lecture Notes in Math., vol. 1289, Springer, Berlin, 1987, pp. 320–399. MR 923140, DOI 10.1007/BFb0078372
- Mariusz Wodzicki, Cyclic homology of pseudodifferential operators and noncommutative Euler class, C. R. Acad. Sci. Paris Sér. I Math. 306 (1988), no. 6, 321–325 (English, with French summary). MR 932347
- Jared Wunsch, Propagation of singularities and growth for Schrödinger operators, Duke Math. J. 98 (1999), no. 1, 137–186. MR 1687567, DOI 10.1215/S0012-7094-99-09804-6
Bibliographic Information
- Robert Lauter
- Affiliation: Fachbereich 17 - Mathematik, Universität Mainz, D-55099 Mainz, Germany
- Email: lauter@mathematik.uni-mainz.de
- Sergiu Moroianu
- Affiliation: Institutul de Matematică al Academiei Române, P.O. Box 1-764, RO-70700 Bucharest, Romania
- Email: moroianu@alum.mit.edu
- Received by editor(s): July 15, 2002
- Received by editor(s) in revised form: January 16, 2003
- Published electronically: April 24, 2003
- Additional Notes: Moroianu was partially supported by a DFG-grant (436-RUM 17/7/01) and by the European Commission RTN HPRN-CT-1999-00118 Geometric Analysis.
- © Copyright 2003 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 355 (2003), 3009-3046
- MSC (2000): Primary 58J42, 58J20
- DOI: https://doi.org/10.1090/S0002-9947-03-03294-X
- MathSciNet review: 1974673