Exponential sums on $\mathbf {A}^n$, II
HTML articles powered by AMS MathViewer
- by Alan Adolphson and Steven Sperber
- Trans. Amer. Math. Soc. 356 (2004), 345-369
- DOI: https://doi.org/10.1090/S0002-9947-03-03324-5
- Published electronically: May 29, 2003
- PDF | Request permission
Abstract:
We prove a vanishing theorem for the $p$-adic cohomology of exponential sums on $\mathbf {A}^n$. In particular, we obtain new classes of exponential sums on $\mathbf {A}^n$ that have a single nonvanishing $p$-adic cohomology group. The dimension of this cohomology group equals a sum of Milnor numbers.References
- Alan Adolphson and Steven Sperber, Exponential sums and Newton polyhedra: cohomology and estimates, Ann. of Math. (2) 130 (1989), no. 2, 367–406. MR 1014928, DOI 10.2307/1971424
- Alan Adolphson and Steven Sperber, Exponential sums on $\mathbf A^n$. part A, Israel J. Math. 120 (2000), no. part A, 3–21. MR 1815368, DOI 10.1007/s002290070035
- Pierre Deligne, La conjecture de Weil. I, Inst. Hautes Études Sci. Publ. Math. 43 (1974), 273–307 (French). MR 340258, DOI 10.1007/BF02684373
- Pierre Deligne, La conjecture de Weil. II, Inst. Hautes Études Sci. Publ. Math. 52 (1980), 137–252 (French). MR 601520, DOI 10.1007/BF02684780
- J. Denef and F. Loeser, Weights of exponential sums, intersection cohomology, and Newton polyhedra, Invent. Math. 106 (1991), no. 2, 275–294. MR 1128216, DOI 10.1007/BF01243914
- Bernard Dwork, On the zeta function of a hypersurface, Inst. Hautes Études Sci. Publ. Math. 12 (1962), 5–68. MR 159823, DOI 10.1007/BF02684275
- Ricardo García López, Exponential sums and singular hypersurfaces, Manuscripta Math. 97 (1998), no. 1, 45–58. MR 1642630, DOI 10.1007/s002290050084
- Nicholas M. Katz, Sommes exponentielles, Astérisque, vol. 79, Société Mathématique de France, Paris, 1980 (French). Course taught at the University of Paris, Orsay, Fall 1979; With a preface by Luc Illusie; Notes written by Gérard Laumon; With an English summary. MR 617009
- Michitake Kita, On vanishing of the twisted rational de Rham cohomology associated with hypergeometric functions, Nagoya Math. J. 135 (1994), 55–85. MR 1295817, DOI 10.1017/S0027763000004955
- Hideyuki Matsumura, Commutative ring theory, Cambridge Studies in Advanced Mathematics, vol. 8, Cambridge University Press, Cambridge, 1986. Translated from the Japanese by M. Reid. MR 879273
- Philippe Robba, Une introduction naïve aux cohomologies de Dwork, Mém. Soc. Math. France (N.S.) 23 (1986), 5, 61–105 (French, with English summary). Introductions aux cohomologies $p$-adiques (Luminy, 1984). MR 865812
- Kyoji Saito, On a generalization of de-Rham lemma, Ann. Inst. Fourier (Grenoble) 26 (1976), no. 2, vii, 165–170 (English, with French summary). MR 413155
- Jean-Pierre Serre, Endomorphismes complètement continus des espaces de Banach $p$-adiques, Inst. Hautes Études Sci. Publ. Math. 12 (1962), 69–85 (French). MR 144186, DOI 10.1007/BF02684276
Bibliographic Information
- Alan Adolphson
- Affiliation: Department of Mathematics, Oklahoma State University, Stillwater, Oklahoma 74078
- MR Author ID: 23230
- Email: adolphs@math.okstate.edu
- Steven Sperber
- Affiliation: School of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455
- MR Author ID: 165470
- Email: sperber@math.umn.edu
- Received by editor(s): May 29, 2002
- Received by editor(s) in revised form: February 13, 2003
- Published electronically: May 29, 2003
- Additional Notes: The first author was supported in part by NSA Grant MDA904-97-1-0068 and NSF Grant DMS-0070510
- © Copyright 2003 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 356 (2004), 345-369
- MSC (2000): Primary 11L07, 11T23, 14F20, 14F30
- DOI: https://doi.org/10.1090/S0002-9947-03-03324-5
- MathSciNet review: 2020036