Cuntz-Krieger algebras of infinite graphs and matrices
Authors:
Iain Raeburn and Wojciech Szymanski
Journal:
Trans. Amer. Math. Soc. 356 (2004), 39-59
MSC (2000):
Primary 46L05
DOI:
https://doi.org/10.1090/S0002-9947-03-03341-5
Published electronically:
August 21, 2003
MathSciNet review:
2020023
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We show that the Cuntz-Krieger algebras of infinite graphs and infinite -matrices can be approximated by those of finite graphs. We then use these approximations to deduce the main uniqueness theorems for Cuntz-Krieger algebras and to compute their
-theory. Since the finite approximating graphs have sinks, we have to calculate the
-theory of Cuntz-Krieger algebras of graphs with sinks, and the direct methods we use to do this should be of independent interest.
- 1. Teresa Bates, David Pask, Iain Raeburn, and Wojciech Szymański, The 𝐶*-algebras of row-finite graphs, New York J. Math. 6 (2000), 307–324. MR 1777234
- 2. Bruce Blackadar, Shape theory for 𝐶*-algebras, Math. Scand. 56 (1985), no. 2, 249–275. MR 813640, https://doi.org/10.7146/math.scand.a-12100
- 3. Bruce Blackadar, 𝐾-theory for operator algebras, 2nd ed., Mathematical Sciences Research Institute Publications, vol. 5, Cambridge University Press, Cambridge, 1998. MR 1656031
- 4. Man Duen Choi and Edward G. Effros, Separable nuclear 𝐶*-algebras and injectivity, Duke Math. J. 43 (1976), no. 2, 309–322. MR 405117
- 5. A. Connes, Classification of injective factors. Cases 𝐼𝐼₁, 𝐼𝐼_{∞}, 𝐼𝐼𝐼_{𝜆}, 𝜆̸=1, Ann. of Math. (2) 104 (1976), no. 1, 73–115. MR 454659, https://doi.org/10.2307/1971057
- 6. A. Connes, An analogue of the Thom isomorphism for crossed products of a 𝐶*-algebra by an action of 𝑅, Adv. in Math. 39 (1981), no. 1, 31–55. MR 605351, https://doi.org/10.1016/0001-8708(81)90056-6
- 7. Joachim Cuntz, Simple 𝐶*-algebras generated by isometries, Comm. Math. Phys. 57 (1977), no. 2, 173–185. MR 467330
- 8. Joachim Cuntz and Wolfgang Krieger, A class of 𝐶*-algebras and topological Markov chains, Invent. Math. 56 (1980), no. 3, 251–268. MR 561974, https://doi.org/10.1007/BF01390048
- 9. Joachim Cuntz and Wolfgang Krieger, A class of 𝐶*-algebras and topological Markov chains, Invent. Math. 56 (1980), no. 3, 251–268. MR 561974, https://doi.org/10.1007/BF01390048
- 10. Ruy Exel and Marcelo Laca, Cuntz-Krieger algebras for infinite matrices, J. Reine Angew. Math. 512 (1999), 119–172. MR 1703078, https://doi.org/10.1515/crll.1999.051
- 11. Ruy Exel and Marcelo Laca, The 𝐾-theory of Cuntz-Krieger algebras for infinite matrices, 𝐾-Theory 19 (2000), no. 3, 251–268. MR 1756260, https://doi.org/10.1023/A:1007815705271
- 12. Ruy Exel, Marcelo Laca, and John Quigg, Partial dynamical systems and 𝐶*-algebras generated by partial isometries, J. Operator Theory 47 (2002), no. 1, 169–186. MR 1905819
- 13. Neal J. Fowler, Marcelo Laca, and Iain Raeburn, The 𝐶*-algebras of infinite graphs, Proc. Amer. Math. Soc. 128 (2000), no. 8, 2319–2327. MR 1670363, https://doi.org/10.1090/S0002-9939-99-05378-2
- 14. Jacob v. B. Hjelmborg, Purely infinite and stable 𝐶*-algebras of graphs and dynamical systems, Ergodic Theory Dynam. Systems 21 (2001), no. 6, 1789–1808. MR 1869070, https://doi.org/10.1017/S0143385701001857
- 15. Astrid an Huef and Iain Raeburn, The ideal structure of Cuntz-Krieger algebras, Ergodic Theory Dynam. Systems 17 (1997), no. 3, 611–624. MR 1452183, https://doi.org/10.1017/S0143385797079200
- 16. J. A. Jeong, G. H. Park, and D. Y. Shin, Stable rank and real rank of graph 𝐶*-algebras, Pacific J. Math. 200 (2001), no. 2, 331–343. MR 1868695, https://doi.org/10.2140/pjm.2001.200.331
- 17. Eberhard Kirchberg, Exact 𝐶*-algebras, tensor products, and the classification of purely infinite algebras, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994) Birkhäuser, Basel, 1995, pp. 943–954. MR 1403994
- 18. A. Kumjian, Notes on 𝐶*-algebras of graphs, Operator algebras and operator theory (Shanghai, 1997) Contemp. Math., vol. 228, Amer. Math. Soc., Providence, RI, 1998, pp. 189–200. MR 1667662, https://doi.org/10.1090/conm/228/03289
- 19. Alex Kumjian and David Pask, 𝐶*-algebras of directed graphs and group actions, Ergodic Theory Dynam. Systems 19 (1999), no. 6, 1503–1519. MR 1738948, https://doi.org/10.1017/S0143385799151940
- 20. Alex Kumjian, David Pask, and Iain Raeburn, Cuntz-Krieger algebras of directed graphs, Pacific J. Math. 184 (1998), no. 1, 161–174. MR 1626528, https://doi.org/10.2140/pjm.1998.184.161
- 21. Alex Kumjian, David Pask, Iain Raeburn, and Jean Renault, Graphs, groupoids, and Cuntz-Krieger algebras, J. Funct. Anal. 144 (1997), no. 2, 505–541. MR 1432596, https://doi.org/10.1006/jfan.1996.3001
- 22. M. H. Mann, Iain Raeburn, and C. E. Sutherland, Representations of finite groups and Cuntz-Krieger algebras, Bull. Austral. Math. Soc. 46 (1992), no. 2, 225–243. MR 1183780, https://doi.org/10.1017/S0004972700011862
- 23. Kengo Matsumoto, 𝐾-theory for 𝐶*-algebras associated with subshifts, Math. Scand. 82 (1998), no. 2, 237–255. MR 1646513, https://doi.org/10.7146/math.scand.a-13835
- 24. David Pask, Cuntz-Krieger algebras associated to directed graphs, Operator algebras and quantum field theory (Rome, 1996) Int. Press, Cambridge, MA, 1997, pp. 85–92. MR 1491109
- 25. David Pask and Iain Raeburn, On the 𝐾-theory of Cuntz-Krieger algebras, Publ. Res. Inst. Math. Sci. 32 (1996), no. 3, 415–443. MR 1409796, https://doi.org/10.2977/prims/1195162850
- 26. Eberhard Kirchberg and N. Christopher Phillips, Embedding of exact 𝐶*-algebras in the Cuntz algebra 𝒪₂, J. Reine Angew. Math. 525 (2000), 17–53. MR 1780426, https://doi.org/10.1515/crll.2000.065
- 27. Claudia Pinzari, The ideal structure of Cuntz-Krieger-Pimsner algebras and Cuntz-Krieger algebras over infinite matrices, Operator algebras and quantum field theory (Rome, 1996) Int. Press, Cambridge, MA, 1997, pp. 136–150. MR 1491114
- 28. Marc A. Rieffel, Dimension and stable rank in the 𝐾-theory of 𝐶*-algebras, Proc. London Math. Soc. (3) 46 (1983), no. 2, 301–333. MR 693043, https://doi.org/10.1112/plms/s3-46.2.301
- 29. Jonathan Rosenberg and Claude Schochet, The Künneth theorem and the universal coefficient theorem for Kasparov’s generalized 𝐾-functor, Duke Math. J. 55 (1987), no. 2, 431–474. MR 894590, https://doi.org/10.1215/S0012-7094-87-05524-4
- 30. Wojciech Szymański, Bimodules for Cuntz-Krieger algebras of infinite matrices, Bull. Austral. Math. Soc. 62 (2000), no. 1, 87–94. MR 1775890, https://doi.org/10.1017/S0004972700018505
- 31. Wojciech Szymański and Shuang Zhang, Infinite simple 𝐶*-algebras and reduced cross products of abelian 𝐶*-algebras and free groups, Manuscripta Math. 92 (1997), no. 4, 487–514. MR 1441490, https://doi.org/10.1007/BF02678208
- 32. Wojciech Szymański and Shuang Zhang, 𝐾-theory of certain 𝐶*-algebras associated with free products of cyclic groups, J. Operator Theory 45 (2001), no. 2, 251–264. MR 1841096
- 33. Yasuo Watatani, Graph theory for 𝐶*-algebras, Operator algebras and applications, Part I (Kingston, Ont., 1980) Proc. Sympos. Pure Math., vol. 38, Amer. Math. Soc., Providence, R.I., 1982, pp. 195–197. MR 679705
Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 46L05
Retrieve articles in all journals with MSC (2000): 46L05
Additional Information
Iain Raeburn
Affiliation:
Department of Mathematics, University of Newcastle, New South Wales 2308, Australia
Email:
iain@frey.newcastle.edu.au
Wojciech Szymanski
Affiliation:
Department of Mathematics, University of Newcastle, New South Wales 2308, Australia
Email:
wojciech@frey.newcastle.edu.au
DOI:
https://doi.org/10.1090/S0002-9947-03-03341-5
Received by editor(s):
December 15, 1999
Published electronically:
August 21, 2003
Article copyright:
© Copyright 2003
American Mathematical Society