Cuntz-Krieger algebras of infinite graphs and matrices
HTML articles powered by AMS MathViewer
- by Iain Raeburn and Wojciech Szymański
- Trans. Amer. Math. Soc. 356 (2004), 39-59
- DOI: https://doi.org/10.1090/S0002-9947-03-03341-5
- Published electronically: August 21, 2003
- PDF | Request permission
Abstract:
We show that the Cuntz-Krieger algebras of infinite graphs and infinite $\{0,1\}$-matrices can be approximated by those of finite graphs. We then use these approximations to deduce the main uniqueness theorems for Cuntz-Krieger algebras and to compute their $K$-theory. Since the finite approximating graphs have sinks, we have to calculate the $K$-theory of Cuntz-Krieger algebras of graphs with sinks, and the direct methods we use to do this should be of independent interest.References
- Teresa Bates, David Pask, Iain Raeburn, and Wojciech Szymański, The $C^*$-algebras of row-finite graphs, New York J. Math. 6 (2000), 307–324. MR 1777234
- Bruce Blackadar, Shape theory for $C^\ast$-algebras, Math. Scand. 56 (1985), no. 2, 249–275. MR 813640, DOI 10.7146/math.scand.a-12100
- Bruce Blackadar, $K$-theory for operator algebras, 2nd ed., Mathematical Sciences Research Institute Publications, vol. 5, Cambridge University Press, Cambridge, 1998. MR 1656031
- Man Duen Choi and Edward G. Effros, Separable nuclear $C^*$-algebras and injectivity, Duke Math. J. 43 (1976), no. 2, 309–322. MR 405117
- A. Connes, Classification of injective factors. Cases $II_{1},$ $II_{\infty },$ $III_{\lambda },$ $\lambda \not =1$, Ann. of Math. (2) 104 (1976), no. 1, 73–115. MR 454659, DOI 10.2307/1971057
- A. Connes, An analogue of the Thom isomorphism for crossed products of a $C^{\ast }$-algebra by an action of $\textbf {R}$, Adv. in Math. 39 (1981), no. 1, 31–55. MR 605351, DOI 10.1016/0001-8708(81)90056-6
- Joachim Cuntz, Simple $C^*$-algebras generated by isometries, Comm. Math. Phys. 57 (1977), no. 2, 173–185. MR 467330, DOI 10.1007/BF01625776
- Joachim Cuntz and Wolfgang Krieger, A class of $C^{\ast }$-algebras and topological Markov chains, Invent. Math. 56 (1980), no. 3, 251–268. MR 561974, DOI 10.1007/BF01390048
- Joachim Cuntz and Wolfgang Krieger, A class of $C^{\ast }$-algebras and topological Markov chains, Invent. Math. 56 (1980), no. 3, 251–268. MR 561974, DOI 10.1007/BF01390048
- Ruy Exel and Marcelo Laca, Cuntz-Krieger algebras for infinite matrices, J. Reine Angew. Math. 512 (1999), 119–172. MR 1703078, DOI 10.1515/crll.1999.051
- Ruy Exel and Marcelo Laca, The $K$-theory of Cuntz-Krieger algebras for infinite matrices, $K$-Theory 19 (2000), no. 3, 251–268. MR 1756260, DOI 10.1023/A:1007815705271
- Ruy Exel, Marcelo Laca, and John Quigg, Partial dynamical systems and $C^*$-algebras generated by partial isometries, J. Operator Theory 47 (2002), no. 1, 169–186. MR 1905819
- Neal J. Fowler, Marcelo Laca, and Iain Raeburn, The $C^*$-algebras of infinite graphs, Proc. Amer. Math. Soc. 128 (2000), no. 8, 2319–2327. MR 1670363, DOI 10.1090/S0002-9939-99-05378-2
- Jacob v. B. Hjelmborg, Purely infinite and stable $C^*$-algebras of graphs and dynamical systems, Ergodic Theory Dynam. Systems 21 (2001), no. 6, 1789–1808. MR 1869070, DOI 10.1017/S0143385701001857
- Astrid an Huef and Iain Raeburn, The ideal structure of Cuntz-Krieger algebras, Ergodic Theory Dynam. Systems 17 (1997), no. 3, 611–624. MR 1452183, DOI 10.1017/S0143385797079200
- J. A. Jeong, G. H. Park, and D. Y. Shin, Stable rank and real rank of graph $C^*$-algebras, Pacific J. Math. 200 (2001), no. 2, 331–343. MR 1868695, DOI 10.2140/pjm.2001.200.331
- Eberhard Kirchberg, Exact $\textrm {C}^*$-algebras, tensor products, and the classification of purely infinite algebras, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994) Birkhäuser, Basel, 1995, pp. 943–954. MR 1403994
- A. Kumjian, Notes on $C^\ast$-algebras of graphs, Operator algebras and operator theory (Shanghai, 1997) Contemp. Math., vol. 228, Amer. Math. Soc., Providence, RI, 1998, pp. 189–200. MR 1667662, DOI 10.1090/conm/228/03289
- Alex Kumjian and David Pask, $C^*$-algebras of directed graphs and group actions, Ergodic Theory Dynam. Systems 19 (1999), no. 6, 1503–1519. MR 1738948, DOI 10.1017/S0143385799151940
- Alex Kumjian, David Pask, and Iain Raeburn, Cuntz-Krieger algebras of directed graphs, Pacific J. Math. 184 (1998), no. 1, 161–174. MR 1626528, DOI 10.2140/pjm.1998.184.161
- Alex Kumjian, David Pask, Iain Raeburn, and Jean Renault, Graphs, groupoids, and Cuntz-Krieger algebras, J. Funct. Anal. 144 (1997), no. 2, 505–541. MR 1432596, DOI 10.1006/jfan.1996.3001
- M. H. Mann, Iain Raeburn, and C. E. Sutherland, Representations of finite groups and Cuntz-Krieger algebras, Bull. Austral. Math. Soc. 46 (1992), no. 2, 225–243. MR 1183780, DOI 10.1017/S0004972700011862
- Kengo Matsumoto, $K$-theory for $C^*$-algebras associated with subshifts, Math. Scand. 82 (1998), no. 2, 237–255. MR 1646513, DOI 10.7146/math.scand.a-13835
- David Pask, Cuntz-Krieger algebras associated to directed graphs, Operator algebras and quantum field theory (Rome, 1996) Int. Press, Cambridge, MA, 1997, pp. 85–92. MR 1491109, DOI 10.1006/jfan.1996.3001
- David Pask and Iain Raeburn, On the $K$-theory of Cuntz-Krieger algebras, Publ. Res. Inst. Math. Sci. 32 (1996), no. 3, 415–443. MR 1409796, DOI 10.2977/prims/1195162850
- Eberhard Kirchberg and N. Christopher Phillips, Embedding of exact $C^*$-algebras in the Cuntz algebra $\scr O_2$, J. Reine Angew. Math. 525 (2000), 17–53. MR 1780426, DOI 10.1515/crll.2000.065
- Claudia Pinzari, The ideal structure of Cuntz-Krieger-Pimsner algebras and Cuntz-Krieger algebras over infinite matrices, Operator algebras and quantum field theory (Rome, 1996) Int. Press, Cambridge, MA, 1997, pp. 136–150. MR 1491114, DOI 10.1063/1.118673
- Marc A. Rieffel, Dimension and stable rank in the $K$-theory of $C^{\ast }$-algebras, Proc. London Math. Soc. (3) 46 (1983), no. 2, 301–333. MR 693043, DOI 10.1112/plms/s3-46.2.301
- Jonathan Rosenberg and Claude Schochet, The Künneth theorem and the universal coefficient theorem for Kasparov’s generalized $K$-functor, Duke Math. J. 55 (1987), no. 2, 431–474. MR 894590, DOI 10.1215/S0012-7094-87-05524-4
- Wojciech Szymański, Bimodules for Cuntz-Krieger algebras of infinite matrices, Bull. Austral. Math. Soc. 62 (2000), no. 1, 87–94. MR 1775890, DOI 10.1017/S0004972700018505
- Wojciech Szymański and Shuang Zhang, Infinite simple $C^*$-algebras and reduced cross products of abelian $C^*$-algebras and free groups, Manuscripta Math. 92 (1997), no. 4, 487–514. MR 1441490, DOI 10.1007/BF02678208
- Wojciech Szymański and Shuang Zhang, $K$-theory of certain $C^*$-algebras associated with free products of cyclic groups, J. Operator Theory 45 (2001), no. 2, 251–264. MR 1841096
- Yasuo Watatani, Graph theory for $C^{\ast }$-algebras, Operator algebras and applications, Part 1 (Kingston, Ont., 1980) Proc. Sympos. Pure Math., vol. 38, Amer. Math. Soc., Providence, R.I., 1982, pp. 195–197. MR 679705
Bibliographic Information
- Iain Raeburn
- Affiliation: Department of Mathematics, University of Newcastle, New South Wales 2308, Australia
- Email: iain@frey.newcastle.edu.au
- Wojciech Szymański
- Affiliation: Department of Mathematics, University of Newcastle, New South Wales 2308, Australia
- Email: wojciech@frey.newcastle.edu.au
- Received by editor(s): December 15, 1999
- Published electronically: August 21, 2003
- © Copyright 2003 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 356 (2004), 39-59
- MSC (2000): Primary 46L05
- DOI: https://doi.org/10.1090/S0002-9947-03-03341-5
- MathSciNet review: 2020023