Slopes of vector bundles on projective curves and applications to tight closure problems
Author:
Holger Brenner
Journal:
Trans. Amer. Math. Soc. 356 (2004), 371-392
MSC (2000):
Primary 13A35, 14H60
DOI:
https://doi.org/10.1090/S0002-9947-03-03391-9
Published electronically:
August 25, 2003
MathSciNet review:
2020037
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We study different notions of slope of a vector bundle over a smooth projective curve with respect to ampleness and affineness in order to apply this to tight closure problems. This method gives new degree estimates from above and from below for the tight closure of a homogeneous -primary ideal in a two-dimensional normal standard-graded algebra
in terms of the minimal and the maximal slope of the sheaf of relations for some ideal generators. If moreover this sheaf of relations is semistable, then both degree estimates coincide and we get a vanishing type theorem.
- 1. Alberto Alzati, Marina Bertolini, and Gian Mario Besana, Numerical criteria for very ampleness of divisors on projective bundles over an elliptic curve, Canad. J. Math. 48 (1996), no. 6, 1121–1137. MR 1426895, https://doi.org/10.4153/CJM-1996-058-1
- 2. Charles M. Barton, Tensor products of ample vector bundles in characteristic 𝑝, Amer. J. Math. 93 (1971), 429–438. MR 289525, https://doi.org/10.2307/2373385
- 3. H. Brenner, Tight closure and projective bundles, J. Algebra 265 (2003), 45-78.
- 4. H. Brenner, Tight closure and plus closure for cones over elliptic curves, submitted.
- 5. F. Campana and H. Flenner, A characterization of ample vector bundles on a curve, Math. Ann. 287 (1990), no. 4, 571–575. MR 1066815, https://doi.org/10.1007/BF01446914
- 6. David Gieseker, 𝑝-ample bundles and their Chern classes, Nagoya Math. J. 43 (1971), 91–116. MR 296078
- 7. A. Grothendieck, Éléments de géométrie algébrique. I. Le langage des schémas, Inst. Hautes Études Sci. Publ. Math. 4 (1960), 228 (French). MR 217083
- 8. A. Grothendieck, Éléments de géométrie algébrique. I. Le langage des schémas, Inst. Hautes Études Sci. Publ. Math. 4 (1960), 228 (French). MR 217083
- 9. G. Harder and M. S. Narasimhan, On the cohomology groups of moduli spaces of vector bundles on curves, Math. Ann. 212 (1974/75), 215–248. MR 364254, https://doi.org/10.1007/BF01357141
- 10. Robin Hartshorne, Ample vector bundles, Inst. Hautes Études Sci. Publ. Math. 29 (1966), 63–94. MR 193092
- 11. Robin Hartshorne, Ample vector bundles on curves, Nagoya Math. J. 43 (1971), 73–89. MR 292847
- 12. Robin Hartshorne, Ample subvarieties of algebraic varieties, Lecture Notes in Mathematics, Vol. 156, Springer-Verlag, Berlin-New York, 1970. Notes written in collaboration with C. Musili. MR 0282977
- 13. Robin Hartshorne, Algebraic geometry, Springer-Verlag, New York-Heidelberg, 1977. Graduate Texts in Mathematics, No. 52. MR 0463157
- 14. Melvin Hochster, Solid closure, Commutative algebra: syzygies, multiplicities, and birational algebra (South Hadley, MA, 1992) Contemp. Math., vol. 159, Amer. Math. Soc., Providence, RI, 1994, pp. 103–172. MR 1266182, https://doi.org/10.1090/conm/159/01508
- 15. Craig Huneke, Tight closure and its applications, CBMS Regional Conference Series in Mathematics, vol. 88, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1996. With an appendix by Melvin Hochster. MR 1377268
- 16. Craig Huneke, Tight closure, parameter ideals, and geometry, Six lectures on commutative algebra (Bellaterra, 1996) Progr. Math., vol. 166, Birkhäuser, Basel, 1998, pp. 187–239. MR 1648666
- 17. Craig Huneke and Karen E. Smith, Tight closure and the Kodaira vanishing theorem, J. Reine Angew. Math. 484 (1997), 127–152. MR 1437301
- 18. Daniel Huybrechts and Manfred Lehn, The geometry of moduli spaces of sheaves, Aspects of Mathematics, E31, Friedr. Vieweg & Sohn, Braunschweig, 1997. MR 1450870
- 19. Paltin Ionescu and Matei Toma, On very ample vector bundles on curves, Internat. J. Math. 8 (1997), no. 5, 633–643. MR 1468354, https://doi.org/10.1142/S0129167X97000330
- 20. Herbert Lange, Zur Klassifikation von Regelmannigfaltigkeiten, Math. Ann. 262 (1983), no. 4, 447–459 (German). MR 696517, https://doi.org/10.1007/BF01456060
- 21. R. Lazarsfeld, Positivity in Algebraic Geometry (Preliminary Draft), 2001.
- 22. Yoichi Miyaoka, The Chern classes and Kodaira dimension of a minimal variety, Algebraic geometry, Sendai, 1985, Adv. Stud. Pure Math., vol. 10, North-Holland, Amsterdam, 1987, pp. 449–476. MR 946247, https://doi.org/10.2969/aspm/01010449
- 23. Shigeru Mukai and Fumio Sakai, Maximal subbundles of vector bundles on a curve, Manuscripta Math. 52 (1985), no. 1-3, 251–256. MR 790801, https://doi.org/10.1007/BF01171494
- 24. Christian Okonek, Michael Schneider, and Heinz Spindler, Vector bundles on complex projective spaces, Progress in Mathematics, vol. 3, Birkhäuser, Boston, Mass., 1980. MR 561910
- 25. C. S. Seshadri, Fibrés vectoriels sur les courbes algébriques, Astérisque, vol. 96, Société Mathématique de France, Paris, 1982 (French). Notes written by J.-M. Drezet from a course at the École Normale Supérieure, June 1980. MR 699278
- 26. Karen E. Smith, Tight closure in graded rings, J. Math. Kyoto Univ. 37 (1997), no. 1, 35–53. MR 1447362, https://doi.org/10.1215/kjm/1250518397
- 27. Xiaotao Sun, Remarks on semistability of 𝐺-bundles in positive characteristic, Compositio Math. 119 (1999), no. 1, 41–52. MR 1711507, https://doi.org/10.1023/A:1001512029096
- 28. Hiroshi Tango, On the behavior of extensions of vector bundles under the Frobenius map, Nagoya Math. J. 48 (1972), 73–89. MR 314851
- 29. Adela Vraciu, ∗-independence and special tight closure, J. Algebra 249 (2002), no. 2, 544–565. MR 1901172, https://doi.org/10.1006/jabr.2001.9074
Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 13A35, 14H60
Retrieve articles in all journals with MSC (2000): 13A35, 14H60
Additional Information
Holger Brenner
Affiliation:
Mathematische Fakultät, Ruhr-Universität Bochum, 44780 Bochum, Germany
Email:
Holger.Brenner@ruhr-uni-bochum.de
DOI:
https://doi.org/10.1090/S0002-9947-03-03391-9
Received by editor(s):
May 21, 2002
Received by editor(s) in revised form:
February 19, 2003
Published electronically:
August 25, 2003
Article copyright:
© Copyright 2003
American Mathematical Society