Limit theorems for partially hyperbolic systems
Author:
Dmitry Dolgopyat
Journal:
Trans. Amer. Math. Soc. 356 (2004), 1637-1689
MSC (2000):
Primary 37D30; Secondary 60Fxx
DOI:
https://doi.org/10.1090/S0002-9947-03-03335-X
Published electronically:
September 22, 2003
MathSciNet review:
2034323
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We consider a large class of partially hyperbolic systems containing, among others, affine maps, frame flows on negatively curved manifolds, and mostly contracting diffeomorphisms. If the rate of mixing is sufficiently high, the system satisfies many classical limit theorems of probability theory.
- 1. Christian Bonatti and Marcelo Viana, SRB measures for partially hyperbolic systems whose central direction is mostly contracting, Israel J. Math. 115 (2000), 157–193. MR 1749677, https://doi.org/10.1007/BF02810585
- 2. D. V. Anosov, Geodesic flows on closed Riemann manifolds with negative curvature., Proceedings of the Steklov Institute of Mathematics, No. 90 (1967). Translated from the Russian by S. Feder, American Mathematical Society, Providence, R.I., 1969. MR 0242194
- 3. D. V. Anosov and Ja. G. Sinaĭ, Certain smooth ergodic systems, Uspehi Mat. Nauk 22 (1967), no. 5 (137), 107–172 (Russian). MR 0224771
- 4. Bakhtin, V. I. Random processes generated by a hyperbolic sequence of mappings. I, Izv. Ross. Akad. Nauk Ser. Mat. 58 (1994), no. 2, 40-72; English transl., Russian Acad. Sci. Izv. Math. 44 (1995) 247-279.
- 5. Bakhtin, V. I. On the averaging method in a system with fast hyperbolic motions, Proc. Belorussian Math. Inst. 6 (2000) 23-26.
- 6. Luis Barreira and Jörg Schmeling, Sets of “non-typical” points have full topological entropy and full Hausdorff dimension, Israel J. Math. 116 (2000), 29–70. MR 1759398, https://doi.org/10.1007/BF02773211
- 7. Christian Bonatti and Marcelo Viana, SRB measures for partially hyperbolic systems whose central direction is mostly contracting, Israel J. Math. 115 (2000), 157–193. MR 1749677, https://doi.org/10.1007/BF02810585
- 8. Rufus Bowen, Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Lecture Notes in Mathematics, Vol. 470, Springer-Verlag, Berlin-New York, 1975. MR 0442989
- 9. Rufus Bowen, Weak mixing and unique ergodicity on homogeneous spaces, Israel J. Math. 23 (1976), no. 3-4, 267–273. MR 407233, https://doi.org/10.1007/BF02761804
- 10. Jonathan Brezin and Michael Shub, Stable ergodicity in homogeneous spaces, Bol. Soc. Brasil. Mat. (N.S.) 28 (1997), no. 2, 197–210. MR 1479501, https://doi.org/10.1007/BF01233391
- 11. M. I. Brin, Topological transitivity of a certain class of dynamical systems, and flows of frames on manifolds of negative curvature, Funkcional. Anal. i Priložen. 9 (1975), no. 1, 9–19 (Russian). MR 0370660
- 12. M. I. Brin, The topology of group extensions of 𝐶-systems, Mat. Zametki 18 (1975), no. 3, 453–465 (Russian). MR 394764
- 13. M. I. Brin and Ja. B. Pesin, Partially hyperbolic dynamical systems, Izv. Akad. Nauk SSSR Ser. Mat. 38 (1974), 170–212 (Russian). MR 0343316
- 14. Keith Burns, Charles Pugh, and Amie Wilkinson, Stable ergodicity and Anosov flows, Topology 39 (2000), no. 1, 149–159. MR 1710997, https://doi.org/10.1016/S0040-9383(98)00064-0
- 15. Keith Burns and Amie Wilkinson, Stable ergodicity of skew products, Ann. Sci. École Norm. Sup. (4) 32 (1999), no. 6, 859–889 (English, with English and French summaries). MR 1717580, https://doi.org/10.1016/S0012-9593(00)87721-6
- 16. Castro A. Backward inducing and statistical properties of some partially hyperbolic attractors, Israel J. Math. 130 (2002) 29-75.
- 17. N. I. Chernov, Limit theorems and Markov approximations for chaotic dynamical systems, Probab. Theory Related Fields 101 (1995), no. 3, 321–362. MR 1324089, https://doi.org/10.1007/BF01200500
- 18. N. I. Chernov and C. Haskell, Nonuniformly hyperbolic 𝐾-systems are Bernoulli, Ergodic Theory Dynam. Systems 16 (1996), no. 1, 19–44. MR 1375125, https://doi.org/10.1017/S0143385700008695
- 19. N. Chernov and D. Kleinbock, Dynamical Borel-Cantelli lemmas for Gibbs measures, Israel J. Math. 122 (2001), 1–27. MR 1826488, https://doi.org/10.1007/BF02809888
- 20. S. G. Dani, On orbits of endomorphisms of tori and the Schmidt game, Ergodic Theory Dynam. Systems 8 (1988), no. 4, 523–529. MR 980795, https://doi.org/10.1017/S0143385700004673
- 21. Manfred Denker, The central limit theorem for dynamical systems, Dynamical systems and ergodic theory (Warsaw, 1986) Banach Center Publ., vol. 23, PWN, Warsaw, 1989, pp. 33–62. MR 1102700
- 22. Manfred Denker, Remarks on weak limit laws for fractal sets, Fractal geometry and stochastics (Finsterbergen, 1994) Progr. Probab., vol. 37, Birkhäuser, Basel, 1995, pp. 167–178. MR 1391975, https://doi.org/10.1007/978-3-0348-7755-8_8
- 23. Manfred Denker and Walter Philipp, Approximation by Brownian motion for Gibbs measures and flows under a function, Ergodic Theory Dynam. Systems 4 (1984), no. 4, 541–552. MR 779712, https://doi.org/10.1017/S0143385700002637
- 24. Dmitry Dolgopyat, On decay of correlations in Anosov flows, Ann. of Math. (2) 147 (1998), no. 2, 357–390. MR 1626749, https://doi.org/10.2307/121012
- 25. Dmitry Dolgopyat, Prevalence of rapid mixing in hyperbolic flows, Ergodic Theory Dynam. Systems 18 (1998), no. 5, 1097–1114. MR 1653299, https://doi.org/10.1017/S0143385798117431
- 26. Dolgopyat D. On mixing properties of compact group extensions of hyperbolic systems, Israel Math. J. 130 (2002) 157-205.
- 27. Dmitry Dolgopyat, On dynamics of mostly contracting diffeomorphisms, Comm. Math. Phys. 213 (2000), no. 1, 181–201. MR 1782146, https://doi.org/10.1007/s002200000238
- 28. Dolgopyat D. On differentiability of SRB states for partially hyperbolic systems, to appear in Inv. Math.
- 29. Dolgopyat D., Kaloshin V. & Koralov L. Sample path properties of stochastic flows, to appear in Ann. Prob.
- 30. Ernst Eberlein and Murad S. Taqqu (eds.), Dependence in probability and statistics, Progress in Probability and Statistics, vol. 11, Birkhäuser Boston, Inc., Boston, MA, 1986. A survey of recent results; Papers from the conference held at the Mathematical Research Institute Oberwolfach, Oberwolfach, April 1985. MR 899982
- 31. Robert Ellis and William Perrizo, Unique ergodicity of flows on homogeneous spaces, Israel J. Math. 29 (1978), no. 2-3, 276–284. MR 473095, https://doi.org/10.1007/BF02762015
- 32. M. I. Gordin, The central limit theorem for stationary processes, Dokl. Akad. Nauk SSSR 188 (1969), 739–741 (Russian). MR 0251785
- 33. M. I. Gordin, Double extensions of dynamical systems and the construction of mixing filtrations, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 244 (1997), no. Veroyatn. i Stat. 2, 61–72, 330–331 (Russian, with English and Russian summaries); English transl., J. Math. Sci. (New York) 99 (2000), no. 2, 1053–1060. MR 1700380, https://doi.org/10.1007/BF02673626
- 34. M. I. Gordin, Double extensions of dynamical systems and the construction of mixing filtrations. II. Quasihyperbolic automorphisms of tori, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 260 (1999), no. Veroyatn. i Stat. 3, 103–118, 318–319 (Russian, with English and Russian summaries); English transl., J. Math. Sci. (New York) 109 (2002), no. 6, 2103–2114. MR 1759157, https://doi.org/10.1023/A:1014573115086
- 35. Matthew Grayson, Charles Pugh, and Michael Shub, Stably ergodic diffeomorphisms, Ann. of Math. (2) 140 (1994), no. 2, 295–329. MR 1298715, https://doi.org/10.2307/2118602
- 36. Y. Guivarc’h and J. Hardy, Théorèmes limites pour une classe de chaînes de Markov et applications aux difféomorphismes d’Anosov, Ann. Inst. H. Poincaré Probab. Statist. 24 (1988), no. 1, 73–98 (French, with English summary). MR 937957
- 37. Guivarch Y. & Le Borgne S. Methode de martingales et flot geodesique sur une surface de courbure constante negative, preprint.
- 38. P. Hall and C. C. Heyde, Martingale limit theory and its application, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1980. Probability and Mathematical Statistics. MR 624435
- 39. Richard Hill and Sanju L. Velani, The ergodic theory of shrinking targets, Invent. Math. 119 (1995), no. 1, 175–198. MR 1309976, https://doi.org/10.1007/BF01245179
- 40. Masaki Hirata, Poisson law for Axiom A diffeomorphisms, Ergodic Theory Dynam. Systems 13 (1993), no. 3, 533–556. MR 1245828, https://doi.org/10.1017/S0143385700007513
- 41. Masaki Hirata, Poisson law for the dynamical systems with the “self-mixing” conditions, Dynamical systems and chaos, Vol. 1 (Hachioji, 1994) World Sci. Publ., River Edge, NJ, 1995, pp. 87–96. MR 1479911
- 42. Masaki Hirata, Benoît Saussol, and Sandro Vaienti, Statistics of return times: a general framework and new applications, Comm. Math. Phys. 206 (1999), no. 1, 33–55. MR 1736991, https://doi.org/10.1007/s002200050697
- 43. M. W. Hirsch, C. C. Pugh, and M. Shub, Invariant manifolds, Lecture Notes in Mathematics, Vol. 583, Springer-Verlag, Berlin-New York, 1977. MR 0501173
- 44. I. A. Ibragimov and Yu. V. Linnik, Independent and stationary sequences of random variables, Wolters-Noordhoff Publishing, Groningen, 1971. With a supplementary chapter by I. A. Ibragimov and V. V. Petrov; Translation from the Russian edited by J. F. C. Kingman. MR 0322926
- 45. A. Katok, Smooth non-Bernoulli 𝐾-automorphisms, Invent. Math. 61 (1980), no. 3, 291–299. MR 592695, https://doi.org/10.1007/BF01390069
- 46. A. Katok and A. Kononenko, Cocycles’ stability for partially hyperbolic systems, Math. Res. Lett. 3 (1996), no. 2, 191–210. MR 1386840, https://doi.org/10.4310/MRL.1996.v3.n2.a6
- 47. Anatole Katok and Ralf J. Spatzier, First cohomology of Anosov actions of higher rank abelian groups and applications to rigidity, Inst. Hautes Études Sci. Publ. Math. 79 (1994), 131–156. MR 1307298
- 48. Anatole Katok, Jean-Marie Strelcyn, F. Ledrappier, and F. Przytycki, Invariant manifolds, entropy and billiards; smooth maps with singularities, Lecture Notes in Mathematics, vol. 1222, Springer-Verlag, Berlin, 1986. MR 872698
- 49. Yitzhak Katznelson, Ergodic automorphisms of 𝑇ⁿ are Bernoulli shifts, Israel J. Math. 10 (1971), 186–195. MR 294602, https://doi.org/10.1007/BF02771569
- 50. Yuri Kifer, Large deviations in dynamical systems and stochastic processes, Trans. Amer. Math. Soc. 321 (1990), no. 2, 505–524. MR 1025756, https://doi.org/10.1090/S0002-9947-1990-1025756-7
- 51. Yuri Kifer, Averaging in dynamical systems and large deviations, Invent. Math. 110 (1992), no. 2, 337–370. MR 1185587, https://doi.org/10.1007/BF01231336
- 52. Yuri Kifer, Limit theorems in averaging for dynamical systems, Ergodic Theory Dynam. Systems 15 (1995), no. 6, 1143–1172. MR 1366312, https://doi.org/10.1017/S0143385700009834
- 53. D. Y. Kleinbock and G. A. Margulis, Bounded orbits of nonquasiunipotent flows on homogeneous spaces, Sinaĭ’s Moscow Seminar on Dynamical Systems, Amer. Math. Soc. Transl. Ser. 2, vol. 171, Amer. Math. Soc., Providence, RI, 1996, pp. 141–172. MR 1359098, https://doi.org/10.1090/trans2/171/11
- 54. D. Y. Kleinbock and G. A. Margulis, Logarithm laws for flows on homogeneous spaces, Invent. Math. 138 (1999), no. 3, 451–494. MR 1719827, https://doi.org/10.1007/s002220050350
- 55. Karol Krzyżewski, On the convergence of certain series related to Axiom A diffeomorphisms, Bull. Acad. Polon. Sci. Sér. Sci. Math. 30 (1982), no. 1-2, 25–30 (English, with Russian summary). MR 667382
- 56. Stéphane Le Borgne, Limit theorems for non-hyperbolic automorphisms of the torus, Israel J. Math. 109 (1999), 61–73. MR 1679589, https://doi.org/10.1007/BF02775027
- 57. Stéphane Le Borgne, Principes d’invariance pour les flots diagonaux sur 𝑆𝐿(𝑑,ℝ)/𝕊𝕃(𝕕,ℤ), Ann. Inst. H. Poincaré Probab. Statist. 38 (2002), no. 4, 581–612 (French, with English and French summaries). MR 1914940, https://doi.org/10.1016/S0246-0203(01)01105-0
- 58. Carlangelo Liverani, Central limit theorem for deterministic systems, International Conference on Dynamical Systems (Montevideo, 1995) Pitman Res. Notes Math. Ser., vol. 362, Longman, Harlow, 1996, pp. 56–75. MR 1460797
- 59. Liverani C. On Contact Anosov flows, preprint.
- 60. G. A. Margulis, Certain measures that are connected with U-flows on compact manifolds, Funkcional. Anal. i Priložen. 4 (1970), no. 1, 62–76 (Russian). MR 0272984
- 61. Calvin C. Moore, Ergodicity of flows on homogeneous spaces, Amer. J. Math. 88 (1966), 154–178. MR 193188, https://doi.org/10.2307/2373052
- 62. Viorel Niţică and Andrei Török, An open dense set of stably ergodic diffeomorphisms in a neighborhood of a non-ergodic one, Topology 40 (2001), no. 2, 259–278. MR 1808220, https://doi.org/10.1016/S0040-9383(99)00060-9
- 63. Donald Ornstein and Benjamin Weiss, On the Bernoulli nature of systems with some hyperbolic structure, Ergodic Theory Dynam. Systems 18 (1998), no. 2, 441–456. MR 1619567, https://doi.org/10.1017/S0143385798100354
- 64. William Parry and Mark Pollicott, Zeta functions and the periodic orbit structure of hyperbolic dynamics, Astérisque 187-188 (1990), 268 (English, with French summary). MR 1085356
- 65. Françoise Pène, Averaging method for differential equations perturbed by dynamical systems, ESAIM Probab. Statist. 6 (2002), 33–88. MR 1905767, https://doi.org/10.1051/ps:2002003
- 66. Ja. B. Pesin, Families of invariant manifolds that correspond to nonzero characteristic exponents, Izv. Akad. Nauk SSSR Ser. Mat. 40 (1976), no. 6, 1332–1379, 1440 (Russian). MR 0458490
- 67. A. B. Vasil′eva and A. A. Hasanov, Some singularly perturbed systems in the critical case, Ukrain. Mat. Ž. 29 (1977), no. 3, 291–297, 427 (Russian). MR 0466811
- 68. L. A. Bunimovich, I. P. Cornfeld, R. L. Dobrushin, M. V. Jakobson, N. B. Maslova, Ya. B. Pesin, Ya. G. Sinaĭ, Yu. M. Sukhov, and A. M. Vershik, Dynamical systems. II, Encyclopaedia of Mathematical Sciences, vol. 2, Springer-Verlag, Berlin, 1989. Ergodic theory with applications to dynamical systems and statistical mechanics; Edited and with a preface by Sinaĭ; Translated from the Russian. MR 1024068
- 69. Ya. B. Pesin and Ya. G. Sinaĭ, Gibbs measures for partially hyperbolic attractors, Ergodic Theory Dynam. Systems 2 (1982), no. 3-4, 417–438 (1983). MR 721733, https://doi.org/10.1017/S014338570000170X
- 70. Walter Philipp, Some metrical theorems in number theory, Pacific J. Math. 20 (1967), 109–127. MR 205930
- 71. Walter Philipp and William Stout, Almost sure invariance principles for partial sums of weakly dependent random variables, Mem. Amer. Math. Soc. 2 issue 2, 161 (1975), iv+140. MR 0433597, https://doi.org/10.1090/memo/0161
- 72. B. Pitskel′, Poisson limit law for Markov chains, Ergodic Theory Dynam. Systems 11 (1991), no. 3, 501–513. MR 1125886, https://doi.org/10.1017/S0143385700006301
- 73. Charles Pugh and Michael Shub, Ergodicity of Anosov actions, Invent. Math. 15 (1972), 1–23. MR 295390, https://doi.org/10.1007/BF01418639
- 74. Charles Pugh and Michael Shub, Ergodic attractors, Trans. Amer. Math. Soc. 312 (1989), no. 1, 1–54. MR 983869, https://doi.org/10.1090/S0002-9947-1989-0983869-1
- 75. Charles Pugh and Michael Shub, Stably ergodic dynamical systems and partial hyperbolicity, J. Complexity 13 (1997), no. 1, 125–179. MR 1449765, https://doi.org/10.1006/jcom.1997.0437
- 76. Charles Pugh and Michael Shub, Stable ergodicity and julienne quasi-conformality, J. Eur. Math. Soc. (JEMS) 2 (2000), no. 1, 1–52. MR 1750453, https://doi.org/10.1007/s100970050013
- 77. Charles Pugh, Michael Shub, and Amie Wilkinson, Hölder foliations, Duke Math. J. 86 (1997), no. 3, 517–546. MR 1432307, https://doi.org/10.1215/S0012-7094-97-08616-6
- 78. M. Ratner, The central limit theorem for geodesic flows on 𝑛-dimensional manifolds of negative curvature, Israel J. Math. 16 (1973), 181–197. MR 333121, https://doi.org/10.1007/BF02757869
- 79. B. A. Sevast′janov, A Poisson limit law in a scheme of sums of dependent random variables, Teor. Verojatnost. i Primenen. 17 (1972), 733–738 (Russian, with English summary). MR 0310943
- 80. Michael Shub and Amie Wilkinson, Pathological foliations and removable zero exponents, Invent. Math. 139 (2000), no. 3, 495–508. MR 1738057, https://doi.org/10.1007/s002229900035
- 81. Ja. G. Sinaĭ, Classical dynamic systems with countably-multiple Lebesgue spectrum. II, Izv. Akad. Nauk SSSR Ser. Mat. 30 (1966), 15–68 (Russian). MR 0197684
- 82. Ja. G. Sinaĭ, Markov partitions and U-diffeomorphisms, Funkcional. Anal. i Priložen 2 (1968), no. 1, 64–89 (Russian). MR 0233038
- 83. Ja. G. Sinaĭ, Gibbs measures in ergodic theory, Uspehi Mat. Nauk 27 (1972), no. 4(166), 21–64 (Russian). MR 0399421
- 84. Ya. G. Sinaĭ, The stochasticity of dynamical systems, Selecta Math. Soviet. 1 (1981), no. 1, 100–119. Selected translations. MR 645903
- 85. A. N. Starkov, New progress in the theory of homogeneous flows, Uspekhi Mat. Nauk 52 (1997), no. 4(316), 87–192 (Russian); English transl., Russian Math. Surveys 52 (1997), no. 4, 721–818. MR 1480891, https://doi.org/10.1070/RM1997v052n04ABEH002060
- 86. G. Yin, On operator-valued mixingales, Stochastic Anal. Appl. 7 (1989), no. 3, 355–366. MR 1010631, https://doi.org/10.1080/07362998908809187
- 87. Dennis Sullivan, Disjoint spheres, approximation by imaginary quadratic numbers, and the logarithm law for geodesics, Acta Math. 149 (1982), no. 3-4, 215–237. MR 688349, https://doi.org/10.1007/BF02392354
- 88. Viana M. Stochastic dynamics of deterministic systems, Lecture Notes XXI Bras. Math. Colloq. IMPA, Rio de Janeiro, 1997.
- 89. Marcelo Viana, Multidimensional nonhyperbolic attractors, Inst. Hautes Études Sci. Publ. Math. 85 (1997), 63–96. MR 1471866
- 90. Amie Wilkinson, Stable ergodicity of the time-one map of a geodesic flow, Ergodic Theory Dynam. Systems 18 (1998), no. 6, 1545–1587. MR 1658611, https://doi.org/10.1017/S0143385798117984
- 91. Lai-Sang Young, Statistical properties of dynamical systems with some hyperbolicity, Ann. of Math. (2) 147 (1998), no. 3, 585–650. MR 1637655, https://doi.org/10.2307/120960
- 92. Lai-Sang Young, Recurrence times and rates of mixing, Israel J. Math. 110 (1999), 153–188. MR 1750438, https://doi.org/10.1007/BF02808180
Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 37D30, 60Fxx
Retrieve articles in all journals with MSC (2000): 37D30, 60Fxx
Additional Information
Dmitry Dolgopyat
Affiliation:
Department of Mathematics and Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742
Email:
dmitry@math.umd.edu
DOI:
https://doi.org/10.1090/S0002-9947-03-03335-X
Keywords:
Partial hyperbolicity,
central limit theorem,
Gibbs measure,
absolute continuity
Received by editor(s):
April 17, 2002
Received by editor(s) in revised form:
March 19, 2003
Published electronically:
September 22, 2003
Additional Notes:
This work was partly supported by an Elisabeth Proctor Fellowship at Princeton, a Miller Fellowship at Berkeley, and a Sloan Fellowship at PennState
Article copyright:
© Copyright 2003
by the author