## On the divergence of the Rogers-Ramanujan continued fraction on the unit circle

HTML articles powered by AMS MathViewer

- by Douglas Bowman and James Mc Laughlin PDF
- Trans. Amer. Math. Soc.
**356**(2004), 3325-3347 Request permission

## Abstract:

This paper studies ordinary and general convergence of the Rogers-Ramanujan continued fraction. Let the continued fraction expansion of any irrational number $t \in (0,1)$ be denoted by $[0,e_{1}(t),e_{2}(t),\cdots ]$ and let the $i$-th convergent of this continued fraction expansion be denoted by $c_{i}(t)/d_{i}(t)$. Let \[ S=\{t \in (0,1): e_{i+1}(t) \geq \phi ^{d_{i}(t)} \text { infinitely often}\}, \] where $\phi = (\sqrt {5}+1)/2$. Let $Y_{S} =\{\exp (2 \pi i t): t \in S \}$. It is shown that if $y \in Y_{S}$, then the Rogers-Ramanujan continued fraction $R(y)$ diverges at $y$. $S$ is an uncountable set of measure zero. It is also shown that there is an uncountable set of points $G \subset Y_{S}$ such that if $y \in G$, then $R(y)$ does not converge generally. It is further shown that $R(y)$ does not converge generally for $|y| > 1$. However we show that $R(y)$ does converge generally if $y$ is a primitive $5m$-th root of unity, for some $m \in \mathbb {N}$. Combining this result with a theorem of I. Schur then gives that the continued fraction converges generally at all roots of unity.## References

- G. E. Andrews, Bruce C. Berndt, Lisa Jacobsen, and Robert L. Lamphere,
*The continued fractions found in the unorganized portions of Ramanujan’s notebooks*, Mem. Amer. Math. Soc.**99**(1992), no. 477, vi+71. MR**1124109**, DOI 10.1090/memo/0477 - Bruce C. Berndt, Heng Huat Chan, and Liang-Cheng Zhang,
*Explicit evaluations of the Rogers-Ramanujan continued fraction*, J. Reine Angew. Math.**480**(1996), 141–159. MR**1420561**, DOI 10.1515/crll.1996.480.141 - Bruce C. Berndt and Heng Huat Chan,
*Some values for the Rogers-Ramanujan continued fraction*, Canad. J. Math.**47**(1995), no. 5, 897–914. MR**1350640**, DOI 10.4153/CJM-1995-046-5 - Peter Borwein and Tamás Erdélyi,
*Polynomials and polynomial inequalities*, Graduate Texts in Mathematics, vol. 161, Springer-Verlag, New York, 1995. MR**1367960**, DOI 10.1007/978-1-4612-0793-1 - Hardy, G. H. (Godfrey Harold).
*Lectures by Godfrey H. Hardy on the mathematical work of Ramanujan; fall term 1936 / Notes by Marshall Hall.*The Institute for Advanced Study. Ann Arbor, Mich., Edwards Bros., Inc., 1937. - Sen-Shan Huang,
*Ramanujan’s evaluations of Rogers-Ramanujan type continued fractions at primitive roots of unity*, Acta Arith.**80**(1997), no. 1, 49–60. MR**1450416**, DOI 10.4064/aa-80-1-49-60 - Lisa Jacobsen,
*General convergence of continued fractions*, Trans. Amer. Math. Soc.**294**(1986), no. 2, 477–485. MR**825716**, DOI 10.1090/S0002-9947-1986-0825716-1 - Lisa Lorentzen and Haakon Waadeland,
*Continued fractions with applications*, Studies in Computational Mathematics, vol. 3, North-Holland Publishing Co., Amsterdam, 1992. MR**1172520** - G. V. Milovanović, D. S. Mitrinović, and Th. M. Rassias,
*Topics in polynomials: extremal problems, inequalities, zeros*, World Scientific Publishing Co., Inc., River Edge, NJ, 1994. MR**1298187**, DOI 10.1142/1284 - Srinivasa Ramanujan,
*Notebooks. Vols. 1, 2*, Tata Institute of Fundamental Research, Bombay, 1957. MR**0099904** - Ramanujan, S.
*Collected Papers*, Chelsea, New York, 1962. - K. G. Ramanathan,
*On Ramanujan’s continued fraction*, Acta Arith.**43**(1984), no. 3, 209–226. MR**738134**, DOI 10.4064/aa-43-3-209-226 - Andrew M. Rockett and Peter Szüsz,
*Continued fractions*, World Scientific Publishing Co., Inc., River Edge, NJ, 1992. MR**1188878**, DOI 10.1142/1725 - L.J.Rogers,
*Second memoir on the expansion of certain infinite products*, Proc. London Math. Soc.**25**(1894), 318-343. - Issai Schur,
*Gesammelte Abhandlungen. Band I*, Springer-Verlag, Berlin-New York, 1973 (German). Herausgegeben von Alfred Brauer und Hans Rohrbach. MR**0462891**, DOI 10.1007/978-3-642-61947-2 - Jinhee Yi,
*Evaluations of the Rogers-Ramanujan continued fraction $R(q)$ by modular equations*, Acta Arith.**97**(2001), no. 2, 103–127. MR**1824980**, DOI 10.4064/aa97-2-2

## Additional Information

**Douglas Bowman**- Affiliation: Department of Mathematical Sciences, Northern Illinois University, DeKalb, Illinois 60115
- Email: bowman@math.niu.edu
**James Mc Laughlin**- Affiliation: Department of Mathematics, Trinity College, 300 Summit Street, Hartford, Connecticut 06106-3100
- Email: james.mclaughlin@trincoll.edu
- Received by editor(s): January 17, 2003
- Received by editor(s) in revised form: April 15, 2003
- Published electronically: December 15, 2003
- Additional Notes: The second author’s research supported in part by a Trjitzinsky Fellowship.
- © Copyright 2003 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**356**(2004), 3325-3347 - MSC (2000): Primary 11A55; Secondary 40A15
- DOI: https://doi.org/10.1090/S0002-9947-03-03390-7
- MathSciNet review: 2052952