Nonexistence of abelian difference sets: Lander's conjecture for prime power orders
Authors:
Ka Hin Leung, Siu Lun Ma and Bernhard Schmidt
Journal:
Trans. Amer. Math. Soc. 356 (2004), 4343-4358
MSC (2000):
Primary 05B10; Secondary 05B20
DOI:
https://doi.org/10.1090/S0002-9947-03-03365-8
Published electronically:
August 26, 2003
MathSciNet review:
2067122
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: In 1963 Ryser conjectured that there are no circulant Hadamard matrices of order and no cyclic difference sets whose order is not coprime to the group order. These conjectures are special cases of Lander's conjecture which asserts that there is no abelian group with a cyclic Sylow
-subgroup containing a difference set of order divisible by
. We verify Lander's conjecture for all difference sets whose order is a power of a prime greater than 3.
- 1. K. T. Arasu and S. L. Ma, Abelian difference sets without self-conjugacy, Des. Codes Cryptogr. 15 (1998), no. 3, 223–230. MR 1658602, https://doi.org/10.1023/A:1008323907194
- 2. K. T. Arasu and S. L. Ma, A nonexistence result on difference sets, partial difference sets and divisible difference sets, J. Statist. Plann. Inference 95 (2001), no. 1-2, 67–73. Special issue on design combinatorics: in honor of S. S. Shrikhande. MR 1829099, https://doi.org/10.1016/S0378-3758(00)00278-0
- 3. K. T. Arasu and Siu Lun Ma, Some new results on circulant weighing matrices, J. Algebraic Combin. 14 (2001), no. 2, 91–101. MR 1867226, https://doi.org/10.1023/A:1011903510338
- 4. L. D. Baumert, Difference sets, SIAM J. Appl. Math. 17 (1969), 826–833. MR 255418, https://doi.org/10.1137/0117074
- 5. Leonard D. Baumert, Cyclic difference sets, Lecture Notes in Mathematics, Vol. 182, Springer-Verlag, Berlin-New York, 1971. MR 0282863
- 6. L.D. Baumert, D.M. Gordon: On cyclic difference sets. Preprint.
- 7. Thomas Beth, Dieter Jungnickel, and Hanfried Lenz, Design theory. Vol. I, 2nd ed., Encyclopedia of Mathematics and its Applications, vol. 69, Cambridge University Press, Cambridge, 1999. MR 1729456
- 8. M. Hall: A survey of difference sets. Proc. Amer. Math. Soc. 7 (1956), 975-986. MR 18:560h
- 9. Zhenlei Jia, New necessary conditions for the existence of difference sets without self-conjugacy, J. Combin. Theory Ser. A 98 (2002), no. 2, 312–327. MR 1899628, https://doi.org/10.1006/jcta.2001.3239
- 10. Jeffrey H. Dinitz and Douglas R. Stinson (eds.), Contemporary design theory, Wiley-Interscience Series in Discrete Mathematics and Optimization, John Wiley & Sons, Inc., New York, 1992. A collection of surveys; A Wiley-Interscience Publication. MR 1178497
- 11. Dieter Jungnickel and Bernhard Schmidt, Difference sets: an update, Geometry, combinatorial designs and related structures (Spetses, 1996) London Math. Soc. Lecture Note Ser., vol. 245, Cambridge Univ. Press, Cambridge, 1997, pp. 89–112. MR 1700842, https://doi.org/10.1017/CBO9780511526114.010
- 12. L. E. Kopilovich, Difference sets in noncyclic abelian groups, Kibernetika (Kiev) 2 (1989), 20–23, 133 (Russian, with English summary); English transl., Cybernetics 25 (1989), no. 2, 153–157. MR 1009696, https://doi.org/10.1007/BF01070123
- 13. Eric S. Lander, Symmetric designs: an algebraic approach, London Mathematical Society Lecture Note Series, vol. 74, Cambridge University Press, Cambridge, 1983. MR 697566
- 14. K.H. Leung, B. Schmidt: The field descent method. Submitted. Download from http://www.math.uni-augsburg.de/opt/bschmidt/download_pub.html
- 15. Robert A. Liebler, The inversion formula, J. Combin. Math. Combin. Comput. 13 (1993), 143–160. MR 1220608
- 16. S. L. Ma, Planar functions, relative difference sets, and character theory, J. Algebra 185 (1996), no. 2, 342–356. MR 1417375, https://doi.org/10.1006/jabr.1996.0329
- 17. Alexander Pott, Finite geometry and character theory, Lecture Notes in Mathematics, vol. 1601, Springer-Verlag, Berlin, 1995. MR 1440858
- 18. Herbert John Ryser, Combinatorial mathematics, The Carus Mathematical Monographs, No. 14, Published by The Mathematical Association of America; distributed by John Wiley and Sons, Inc., New York, 1963. MR 0150048
- 19. Bernhard Schmidt, Cyclotomic integers and finite geometry, J. Amer. Math. Soc. 12 (1999), no. 4, 929–952. MR 1671453, https://doi.org/10.1090/S0894-0347-99-00298-2
- 20. B. Schmidt: Characters and cyclotomic fields in finite geometry. Springer Lecture Notes in Mathematics 1797 (2002).
- 21. J. Singer: A theorem in finite projective geometry and some applications to number theory. Trans. Amer. Math. Soc. 43 (1938), 377-385.
- 22. Richard J. Turyn, Character sums and difference sets, Pacific J. Math. 15 (1965), 319–346. MR 179098
- 23. Lawrence C. Washington, Introduction to cyclotomic fields, 2nd ed., Graduate Texts in Mathematics, vol. 83, Springer-Verlag, New York, 1997. MR 1421575
Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 05B10, 05B20
Retrieve articles in all journals with MSC (2000): 05B10, 05B20
Additional Information
Ka Hin Leung
Affiliation:
Department of Mathematics, National University of Singapore, Kent Ridge, Singapore 119260, Republic of Singapore
Email:
matlkh@nus.edu.sg
Siu Lun Ma
Affiliation:
Department of Mathematics, National University of Singapore, Kent Ridge, Singapore 119260, Republic of Singapore
Email:
matmasl@nus.edu.sg
Bernhard Schmidt
Affiliation:
Institut für Mathematik, Universität Augsburg, 86135 Augsburg, Germany
Email:
schmidt@math.uni-augsburg.de
DOI:
https://doi.org/10.1090/S0002-9947-03-03365-8
Keywords:
Difference set,
Ryser's conjecture,
Lander's conjecture,
field descent
Received by editor(s):
November 13, 2002
Received by editor(s) in revised form:
April 10, 2003
Published electronically:
August 26, 2003
Article copyright:
© Copyright 2003
American Mathematical Society