Nonautonomous Kato classes of measures and Feynman-Kac propagators
HTML articles powered by AMS MathViewer
- by Archil Gulisashvili
- Trans. Amer. Math. Soc. 357 (2005), 4607-4632
- DOI: https://doi.org/10.1090/S0002-9947-04-03603-7
- Published electronically: December 9, 2004
- PDF | Request permission
Abstract:
The behavior of the Feynman-Kac propagator corresponding to a time-dependent measure on $R^n$ is studied. We prove the boundedness of the propagator in various function spaces on $R^n$, and obtain a uniqueness theorem for an exponentially bounded distributional solution to a nonautonomous heat equation.References
- M. Aizenman and B. Simon, Brownian motion and Harnack inequality for Schrödinger operators, Comm. Pure Appl. Math. 35 (1982), no. 2, 209–273. MR 644024, DOI 10.1002/cpa.3160350206
- Sergio Albeverio and Zhi Ming Ma, Perturbation of Dirichlet forms—lower semiboundedness, closability, and form cores, J. Funct. Anal. 99 (1991), no. 2, 332–356. MR 1121617, DOI 10.1016/0022-1236(91)90044-6
- D. G. Aronson, Non-negative solutions of linear parabolic equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 22 (1968), 607–694. MR 435594
- P. Blanchard and Zhi-Ming Ma, Semigroups of Schrödinger operators with potentials given by Radon measures, In: Stochastic Processes-Physics and Geometry (eds. S. Albeverio, et al.), World Scientific, Singapore, 1989.
- Ph. Blanchard and Zhi Ming Ma, New results on the Schrödinger semigroups with potentials given by signed smooth measures, Stochastic analysis and related topics, II (Silivri, 1988) Lecture Notes in Math., vol. 1444, Springer, Berlin, 1990, pp. 213–243. MR 1078851, DOI 10.1007/BFb0083618
- Michael Demuth and Jan A. van Casteren, Stochastic spectral theory for selfadjoint Feller operators, Probability and its Applications, Birkhäuser Verlag, Basel, 2000. A functional integration approach. MR 1772266, DOI 10.1007/978-3-0348-8460-0
- D. Feyel and A. de La Pradelle, Étude de l’équation $\frac 12\Delta u-u\mu =0$ où $\mu$ est une mesure positive, Ann. Inst. Fourier (Grenoble) 38 (1988), no. 3, 199–218 (French). MR 976689
- Masatoshi Fukushima, Dirichlet forms and Markov processes, North-Holland Mathematical Library, vol. 23, North-Holland Publishing Co., Amsterdam-New York; Kodansha, Ltd., Tokyo, 1980. MR 569058
- R. K. Getoor, Measure perturbations of Markovian semigroups, Potential Anal. 11 (1999), no. 2, 101–133. MR 1703827, DOI 10.1023/A:1008615732680
- Archil Gulisashvili, Sharp estimates in smoothing theorems for Schrödinger semigroups, J. Funct. Anal. 170 (2000), no. 1, 161–187. MR 1736200, DOI 10.1006/jfan.1999.3512
- Archil Gulisashvili, Classes of time-dependent measures and the behavior of Feynman-Kac propagators, C. R. Math. Acad. Sci. Paris 334 (2002), no. 6, 445–449 (English, with English and French summaries). MR 1890631, DOI 10.1016/S1631-073X(02)02294-X
- Archil Gulisashvili, On the heat equation with a time-dependent singular potential, J. Funct. Anal. 194 (2002), no. 1, 17–52. MR 1929138, DOI 10.1016/S0022-1236(02)93954-6
- Archil Gulisashvili and Mark A. Kon, Exact smoothing properties of Schrödinger semigroups, Amer. J. Math. 118 (1996), no. 6, 1215–1248. MR 1420922, DOI 10.1353/ajm.1996.0050
- Wolfhard Hansen, Harnack inequalities for Schrödinger operators, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 28 (1999), no. 3, 413–470. MR 1736524
- Gerald W. Johnson and Michel L. Lapidus, The Feynman integral and Feynman’s operational calculus, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 2000. Oxford Science Publications. MR 1771173
- A. de La Pradelle, Sur les perturbations d’espaces harmoniques, Acad. Roy. Belg. Bull. Cl. Sci. (6) 1 (1990), no. 6-9, 201–212 (French). MR 1146274, DOI 10.3406/barb.1990.38550
- Vitali Liskevich and Yuli Semenov, Estimates for fundamental solutions of second-order parabolic equations, J. London Math. Soc. (2) 62 (2000), no. 2, 521–543. MR 1783642, DOI 10.1112/S0024610700001332
- Masao Nagasawa, Stochastic processes in quantum physics, Monographs in Mathematics, vol. 94, Birkhäuser Verlag, Basel, 2000. MR 1739699, DOI 10.1007/978-3-0348-8383-2
- Qi Zhang, On a parabolic equation with a singular lower order term, Trans. Amer. Math. Soc. 348 (1996), no. 7, 2811–2844. MR 1360232, DOI 10.1090/S0002-9947-96-01675-3
- Qi S. Zhang, On a parabolic equation with a singular lower order term. II. The Gaussian bounds, Indiana Univ. Math. J. 46 (1997), no. 3, 989–1020. MR 1488344, DOI 10.1512/iumj.1997.46.1112
- Frank Räbiger, Roland Schnaubelt, Abdelaziz Rhandi, and Jürgen Voigt, Non-autonomous Miyadera perturbations, Differential Integral Equations 13 (2000), no. 1-3, 341–368. MR 1811962
- Roland Schnaubelt and Jürgen Voigt, The non-autonomous Kato class, Arch. Math. (Basel) 72 (1999), no. 6, 454–460. MR 1687500, DOI 10.1007/s000130050355
- Barry Simon, Schrödinger semigroups, Bull. Amer. Math. Soc. (N.S.) 7 (1982), no. 3, 447–526. MR 670130, DOI 10.1090/S0273-0979-1982-15041-8
- A. N. Tikhonov, Théorèmes d’unicité pour l’equation de la chaleur, Mat. Sbornik 42 (1935), 199-216.
- E. C. Titchmarsh, Introduction to the Theory of Fourier Integrals, Oxford University Press, London, 1937.
- Jürgen Voigt, Absorption semigroups, their generators, and Schrödinger semigroups, J. Funct. Anal. 67 (1986), no. 2, 167–205. MR 845197, DOI 10.1016/0022-1236(86)90036-4
- J. Voigt, Absorption semigroups, Feller property, and Kato class, Partial differential operators and mathematical physics (Holzhau, 1994) Oper. Theory Adv. Appl., vol. 78, Birkhäuser, Basel, 1995, pp. 389–396. MR 1365353
- T. S. Zhang, Generalized Feynman-Kac semigroups, associated quadratic forms and asymptotic properties, Potential Anal. 14 (2001), no. 4, 387–408. MR 1825693, DOI 10.1023/A:1011200525751
Bibliographic Information
- Archil Gulisashvili
- Affiliation: Department of Mathematics, Ohio University, Athens, Ohio 45701
- Email: guli@bing.math.ohiou.edu
- Received by editor(s): October 10, 2003
- Received by editor(s) in revised form: December 22, 2003
- Published electronically: December 9, 2004
- © Copyright 2004
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 357 (2005), 4607-4632
- MSC (2000): Primary 35K15; Secondary 60H30
- DOI: https://doi.org/10.1090/S0002-9947-04-03603-7
- MathSciNet review: 2156723