Aleksandrov surfaces and hyperbolicity
HTML articles powered by AMS MathViewer
- by Byung-Geun Oh
- Trans. Amer. Math. Soc. 357 (2005), 4555-4577
- DOI: https://doi.org/10.1090/S0002-9947-05-03977-2
- Published electronically: June 10, 2005
- PDF | Request permission
Abstract:
Aleksandrov surfaces are a generalization of two-dimensional Riemannian manifolds, and it is known that every open simply-connected Aleksandrov surface is conformally equivalent either to the unit disc (hyperbolic case) or to the plane (parabolic case). We prove a criterion for hyperbolicity of Aleksandrov surfaces which have nice tilings and where negative curvature dominates. We then apply this to generalize a result of Nevanlinna and give a partial answer for his conjecture about line complexes.References
- Lars V. Ahlfors, Conformal invariants: topics in geometric function theory, McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1973. MR 0357743
- A. D. Alexandroff, Isoperimetric inequalities for curved surfaces, C. R. (Doklady) Acad. Sci. URSS (N.S.) 47 (1945), 235–238. MR 0013543
- A. D. Alexandrow, Über eine Verallgemeinerung der Riemannschen Geometrie, Schr. Forschungsinst. Math. 1 (1957), 33–84 (German). MR 87119
- A. D. Aleksandrov and V. A. Zalgaller, Intrinsic geometry of surfaces, Translations of Mathematical Monographs, Vol. 15, American Mathematical Society, Providence, R.I., 1967. Translated from the Russian by J. M. Danskin. MR 0216434
- Itai Benjamini, Sergei Merenkov, and Oded Schramm, A negative answer to Nevanlinna’s type question and a parabolic surface with a lot of negative curvature, Proc. Amer. Math. Soc. 132 (2004), no. 3, 641–647. MR 2019938, DOI 10.1090/S0002-9939-03-07147-8
- V. N. Berestovskij and I. G. Nikolaev, Multidimensional generalized Riemannian spaces, Geometry, IV, Encyclopaedia Math. Sci., vol. 70, Springer, Berlin, 1993, pp. 165–243, 245–250. MR 1263965, DOI 10.1007/978-3-662-02897-1_{2}
- Mario Bonk, Singular surfaces and meromorphic functions, Notices Amer. Math. Soc. 49 (2002), no. 6, 647–657. MR 1908328
- M. Bonk and A. Eremenko, Schlicht regions for entire and meromorphic functions, J. Anal. Math. 77 (1999), 69–104. MR 1753483, DOI 10.1007/BF02791258
- Mario Bonk and Alexandre Eremenko, Uniformly hyperbolic surfaces, Indiana Univ. Math. J. 49 (2000), no. 1, 61–80. MR 1777037, DOI 10.1512/iumj.2000.49.1886
- M. Bonk and A. Eremenko, Covering properties of meromorphic functions, negative curvature and spherical geometry, Ann. of Math. (2) 152 (2000), no. 2, 551–592. MR 1804531, DOI 10.2307/2661392
- Yu. D. Burago and V. A. Zalgaller, Geometric inequalities, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 285, Springer-Verlag, Berlin, 1988. Translated from the Russian by A. B. Sosinskiĭ; Springer Series in Soviet Mathematics. MR 936419, DOI 10.1007/978-3-662-07441-1
- W. Chauvenet, A Treatise on Plane and Spherical Trigonometry, J. B. Lippincott Co., Philadelphia, 1850.
- M. Coornaert, T. Delzant, and A. Papadopoulos, Géométrie et théorie des groupes, Lecture Notes in Mathematics, vol. 1441, Springer-Verlag, Berlin, 1990 (French). Les groupes hyperboliques de Gromov. [Gromov hyperbolic groups]; With an English summary. MR 1075994, DOI 10.1007/BFb0084913
- W. K. Hayman, Meromorphic functions, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1964. MR 0164038
- Alfred Huber, Zum potentialtheoretischen Aspekt der Alexandrowschen Flächentheorie, Comment. Math. Helv. 34 (1960), 99–126 (German). MR 115147, DOI 10.1007/BF02565931
- Rolf Nevanlinna, Analytic functions, Die Grundlehren der mathematischen Wissenschaften, Band 162, Springer-Verlag, New York-Berlin, 1970. Translated from the second German edition by Phillip Emig. MR 0279280, DOI 10.1007/978-3-642-85590-0
- B. Oh, Linear Isoperimetric Inequality, Gromov Hyperbolicity and Riemann Surfaces of class $F_q$, preprint.
- Yu. G. Reshetnyak, Two-dimensional manifolds of bounded curvature, Geometry, IV, Encyclopaedia Math. Sci., vol. 70, Springer, Berlin, 1993, pp. 3–163, 245–250. MR 1263964, DOI 10.1007/978-3-662-02897-1_{1}
- S. Stoilov, Leçons sur les principes topologiques de la théorie des fonctions analytiques, Gauthier-Villars, Paris, 1956.
- O. Teichmüller, Untersuchungen über konforme und quasikonforme Abbildung, Dtsch. Math. 3, 1938, no. 6, pp. 621–678.
- Jussi Väisälä, Lectures on $n$-dimensional quasiconformal mappings, Lecture Notes in Mathematics, Vol. 229, Springer-Verlag, Berlin-New York, 1971. MR 0454009, DOI 10.1007/BFb0061216
Bibliographic Information
- Byung-Geun Oh
- Affiliation: Department of Mathematics, Purdue University, West Lafayette, Indiana 47907
- Address at time of publication: Department of Mathematics, University of Washington, Box 354350, Seattle, Washington 98195-4350
- Email: boh@math.purdue.edu, bgoh@math.washington.edu
- Received by editor(s): December 17, 2003
- Published electronically: June 10, 2005
- © Copyright 2005
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 357 (2005), 4555-4577
- MSC (2000): Primary 30F20, 30D30; Secondary 28A75, 30D35
- DOI: https://doi.org/10.1090/S0002-9947-05-03977-2
- MathSciNet review: 2156721