The automorphism tower of groups acting on rooted trees

Authors:
Laurent Bartholdi and Said N. Sidki

Journal:
Trans. Amer. Math. Soc. **358** (2006), 329-358

MSC (2000):
Primary 20F28; Secondary 20E08

DOI:
https://doi.org/10.1090/S0002-9947-05-03712-8

Published electronically:
March 31, 2005

MathSciNet review:
2171236

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The group of isometries $\operatorname {Aut}(\mathcal {T}_n)$ of a rooted $n$-ary tree, and many of its subgroups with branching structure, have groups of automorphisms induced by conjugation in $\operatorname {Aut}(\mathcal {T}_n)$. This fact has stimulated the computation of the group of automorphisms of such well-known examples as the group $\mathfrak {G}$ studied by R. Grigorchuk, and the group $\ddot \Gamma$ studied by N. Gupta and the second author. In this paper, we pursue the larger theme of towers of automorphisms of groups of tree isometries such as $\mathfrak {G}$ and $\ddot \Gamma$. We describe this tower for all subgroups of $\operatorname {Aut}(\mathcal {T}_2)$ which decompose as infinitely iterated wreath products. Furthermore, we fully describe the towers of $\mathfrak {G}$ and $\ddot \Gamma$. More precisely, the tower of $\mathfrak {G}$ is infinite countable, and the terms of the tower are $2$-groups. Quotients of successive terms are infinite elementary abelian $2$-groups. In contrast, the tower of $\ddot \Gamma$ has length $2$, and its terms are $\{2,3\}$-groups. We show that $\operatorname {Aut}^2(\ddot \Gamma ) /\operatorname {Aut}(\ddot \Gamma )$ is an elementary abelian $3$-group of countably infinite rank, while $\operatorname {Aut}^3(\ddot \Gamma )=\operatorname {Aut}^2(\ddot \Gamma )$.

- L. Bartholdi and R. I. Grigorchuk,
*On the spectrum of Hecke type operators related to some fractal groups*, Tr. Mat. Inst. Steklova**231**(2000), no. Din. Sist., Avtom. i Beskon. Gruppy, 5–45; English transl., Proc. Steklov Inst. Math.**4(231)**(2000), 1–41. MR**1841750** - Laurent Bartholdi and Rostislav I. Grigorchuk,
*On parabolic subgroups and Hecke algebras of some fractal groups*, Serdica Math. J.**28**(2002), no. 1, 47–90. MR**1899368** - Laurent Bartholdi, Rostislav I. Grigorchuk and Volodymyr V. Nekrashevych,
*From fractal groups to fractal sets*, Fractals in Graz, (P. Grabner and W. Woess, eds.), Trends in Mathematics, Birkhaüser Verlag, Basel, 2003, pp. 25–118. - Laurent Bartholdi,
*Lie algebras and growth in branch groups*, Pacific J. Math.**218**, (2005), no. 1, 241–282. - Yu. V. Bodnarchuk,
*The structure of the automorphism group of a nonstandard wreath product of a group*, Ukrain. Mat. Zh.**36**(1984), no. 2, 143–148 (Russian). MR**742435** - Martin R. Bridson and Karen Vogtmann,
*The symmetries of outer space*, Duke Math. J.**106**(2001), no. 2, 391–409. MR**1813435**, DOI https://doi.org/10.1215/S0012-7094-01-10625-X - A. M. Brunner and Said Sidki,
*On the automorphism group of the one-rooted binary tree*, J. Algebra**195**(1997), no. 2, 465–486. MR**1469633**, DOI https://doi.org/10.1006/jabr.1997.7033 - W. Burnside,
*Theory of groups of finite order*, Dover Publications, Inc., New York, 1955. 2d ed. MR**0069818** - Joan L. Dyer and Edward Formanek,
*The automorphism group of a free group is complete*, J. London Math. Soc. (2)**11**(1975), no. 2, 181–190. MR**379683**, DOI https://doi.org/10.1112/jlms/s2-11.2.181 - Jacek Fabrykowski and Narain Gupta,
*On groups with sub-exponential growth functions*, J. Indian Math. Soc. (N.S.)**49**(1985), no. 3-4, 249–256 (1987). MR**942349** - E. Fried and J. Kollár,
*Automorphism groups of fields*, Universal algebra (Esztergom, 1977) Colloq. Math. Soc. János Bolyai, vol. 29, North-Holland, Amsterdam-New York, 1982, pp. 293–303. MR**660867** -
*GAP — Groups, Algorithms, and Programming, Version 4.3*, The GAP Group, 2002, http://www.gap-system.org. - R. I. Grigorčuk,
*On Burnside’s problem on periodic groups*, Funktsional. Anal. i Prilozhen.**14**(1980), no. 1, 53–54 (Russian). MR**565099** - R. I. Grigorchuk,
*On the Milnor problem of group growth*, Dokl. Akad. Nauk SSSR**271**(1983), no. 1, 30–33 (Russian). MR**712546** - Rostislav I. Grigorchuk and Said N. Sidki,
*The group of automorphisms of a $3$-generated $2$-group of intermediate growth*, 2003, to appear in International Jounal of Algebra and Computation. - Narain Gupta and Saïd Sidki,
*On the Burnside problem for periodic groups*, Math. Z.**182**(1983), no. 3, 385–388. MR**696534**, DOI https://doi.org/10.1007/BF01179757 - Georgi K. Genov,
*Some examples of exact operations on the class of all groups*, Annuaire Univ. Sofia Fac. Math. Méc.**68**(1973/74), 323–337 (1977) (Russian, with English summary). MR**487370** - B. Hartley,
*Simple locally finite groups*, Finite and locally finite groups (Istanbul, 1994) NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 471, Kluwer Acad. Publ., Dordrecht, 1995, pp. 1–44. MR**1362804**, DOI https://doi.org/10.1007/978-94-011-0329-9_1 - J. A. Hulse,
*Automorphism towers of polycyclic groups*, J. Algebra**16**(1970), 347–398. MR**266986**, DOI https://doi.org/10.1016/0021-8693%2870%2990015-3 - Winfried Just, Saharon Shelah, and Simon Thomas,
*The automorphism tower problem revisited*, Adv. Math.**148**(1999), no. 2, 243–265. MR**1736959**, DOI https://doi.org/10.1006/aima.1999.1852 - Yaroslav Lavreniuk and Volodymyr Nekrashevych,
*Rigidity of branch groups acting on rooted trees*, Geom. Dedicata**89**(2002), 159–179. MR**1890957**, DOI https://doi.org/10.1023/A%3A1014264212978 - Paul Lentoudis and Jacques Tits,
*Sur le groupe des automorphismes de certains produits en couronne*, C. R. Acad. Sci. Paris Sér. I Math.**305**(1987), no. 20, 847–852 (French, with English summary). MR**925281** - J. Lewin,
*A finitely presented group whose group of automorphisms is infinitely generated*, J. London Math. Soc.**42**(1967), 610–613. MR**222148**, DOI https://doi.org/10.1112/jlms/s1-42.1.610 - I. G. Lysënok,
*A set of defining relations for the Grigorchuk group*, Mat. Zametki**38**(1985), no. 4, 503–516, 634 (Russian). MR**819415** - Darryl McCullough,
*Finite aspherical complexes with infinitely-generated groups of self-homotopy-equivalences*, Proc. Amer. Math. Soc.**80**(1980), no. 2, 337–340. MR**577770**, DOI https://doi.org/10.1090/S0002-9939-1980-0577770-2 - Rögnvaldur G. Möller,
*The automorphism groups of regular trees*, J. London Math. Soc. (2)**43**(1991), no. 2, 236–252. MR**1111582**, DOI https://doi.org/10.1112/jlms/s2-43.2.236 - Peter M. Neumann,
*On the structure of standard wreath products of groups*, Math. Z.**84**(1964), 343–373. MR**188280**, DOI https://doi.org/10.1007/BF01109904 - Andrew Rae and James E. Roseblade,
*Automorphism towers of extremal groups*, Math. Z.,**117**, (1970), 70–75. - Andrew Rae and James E. Roseblade,
*Automorphism towers of extremal groups*, Math. Z.**117**(1970), 70–75. MR**276322**, DOI https://doi.org/10.1007/BF01109829 - Claas E. Röver,
*Abstract commensurators of groups acting on rooted trees*, Proceedings of the Conference on Geometric and Combinatorial Group Theory, Part I (Haifa, 2000), 2002, pp. 45–61. MR**1950873**, DOI https://doi.org/10.1023/A%3A1020916928393 - Matatyahu Rubin,
*The reconstruction of trees from their automorphism groups*, Contemporary Mathematics, vol. 151, American Mathematical Society, Providence, RI, 1993. MR**1240317** - Said Sidki,
*On a $2$-generated infinite $3$-group: the presentation problem*, J. Algebra**110**(1987), no. 1, 13–23. MR**904179**, DOI https://doi.org/10.1016/0021-8693%2887%2990034-2 - Said Sidki,
*On a $2$-generated infinite $3$-group: the presentation problem*, J. Algebra**110**(1987), no. 1, 13–23. MR**904179**, DOI https://doi.org/10.1016/0021-8693%2887%2990034-2 - ---,
*Regular trees and their automorphisms*, 1996, notes for a course, XIV Escola de Álgebra, Rio de Janeiro. - Simon Thomas,
*The automorphism tower problem*, Proc. Amer. Math. Soc.**95**(1985), no. 2, 166–168. MR**801316**, DOI https://doi.org/10.1090/S0002-9939-1985-0801316-9 - ---,
*The automorphism tower problem*, 2004, to appear; book available electronically at http://math.rutgers.edu/˜sthomas/book.{dvi,ps}. - Vladimir Tolstykh,
*The automorphism tower of a free group*, J. London Math. Soc. (2)**61**(2000), no. 2, 423–440. MR**1760692**, DOI https://doi.org/10.1112/S0024610799008273 - Helmut Wielandt,
*Eine Verallgemeinerung der invarianten Untergruppen*, Math. Z.,**45**, (1939), 209–244. - D. V. Znoĭko,
*The automorphism groups of regular trees*, Mat. Sb. (N.S.)**103(145)**(1977), no. 1, 124–130, 144 (Russian). MR**0444513**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2000):
20F28,
20E08

Retrieve articles in all journals with MSC (2000): 20F28, 20E08

Additional Information

**Laurent Bartholdi**

Affiliation:
École Polytechnique Fédérale, SB/IGAT/MAD, Bâtiment BCH, 1015 Lausanne, Switzerland

Email:
laurent.bartholdi@epfl.ch

**Said N. Sidki**

Affiliation:
Universidade de Brasília, Departamento de Matemática, 70.910-900 Brasilia-DF, Brasil

Email:
sidki@mat.unb.br

Received by editor(s):
August 15, 2003

Received by editor(s) in revised form:
March 12, 2004

Published electronically:
March 31, 2005

Additional Notes:
The authors gratefully acknowledge support from the “Fonds National Suisse de la Recherche Scientifique”.

Article copyright:
© Copyright 2005
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.