A density theorem on automorphic $L$-functions and some applications
HTML articles powered by AMS MathViewer
- by Yuk-Kam Lau and Jie Wu PDF
- Trans. Amer. Math. Soc. 358 (2006), 441-472 Request permission
Abstract:
We establish a density theorem on automorphic $L$-functions and give some applications on the extreme values of these $L$-functions at $s=1$ and the distribution of the Hecke eigenvalue of holomorphic cusp forms.References
- J. Cogdell and P. Michel, On the complex moments of symmetric power $L$-functions at $s=1$, Int. Math. Res. Not. 31 (2004), 1561–1617. MR 2035301, DOI 10.1155/S1073792804132455
- Stephen Gelbart and Hervé Jacquet, A relation between automorphic representations of $\textrm {GL}(2)$ and $\textrm {GL}(3)$, Ann. Sci. École Norm. Sup. (4) 11 (1978), no. 4, 471–542. MR 533066
- Jeffrey Hoffstein and Paul Lockhart, Coefficients of Maass forms and the Siegel zero, Ann. of Math. (2) 140 (1994), no. 1, 161–181. With an appendix by Dorian Goldfeld, Hoffstein and Daniel Lieman. MR 1289494, DOI 10.2307/2118543
- Andrew Granville and K. Soundararajan, Large character sums, J. Amer. Math. Soc. 14 (2001), no. 2, 365–397. MR 1815216, DOI 10.1090/S0894-0347-00-00357-X
- L. Habsieger & E. Royer, $L$-functions of automorphic forms and combinatorics: Dyck paths, Ann. Inst. Fourier (Grenoble), to appear.
- Jeffrey Hoffstein and Paul Lockhart, Coefficients of Maass forms and the Siegel zero, Ann. of Math. (2) 140 (1994), no. 1, 161–181. With an appendix by Dorian Goldfeld, Hoffstein and Daniel Lieman. MR 1289494, DOI 10.2307/2118543
- Henryk Iwaniec, Topics in classical automorphic forms, Graduate Studies in Mathematics, vol. 17, American Mathematical Society, Providence, RI, 1997. MR 1474964, DOI 10.1090/gsm/017
- Henryk Iwaniec, Wenzhi Luo, and Peter Sarnak, Low lying zeros of families of $L$-functions, Inst. Hautes Études Sci. Publ. Math. 91 (2000), 55–131 (2001). MR 1828743
- Henry H. Kim, Functoriality for the exterior square of $\textrm {GL}_4$ and the symmetric fourth of $\textrm {GL}_2$, J. Amer. Math. Soc. 16 (2003), no. 1, 139–183. With appendix 1 by Dinakar Ramakrishnan and appendix 2 by Kim and Peter Sarnak. MR 1937203, DOI 10.1090/S0894-0347-02-00410-1
- Henry H. Kim and Freydoon Shahidi, Functorial products for $\textrm {GL}_2\times \textrm {GL}_3$ and the symmetric cube for $\textrm {GL}_2$, Ann. of Math. (2) 155 (2002), no. 3, 837–893. With an appendix by Colin J. Bushnell and Guy Henniart. MR 1923967, DOI 10.2307/3062134
- Henry H. Kim and Freydoon Shahidi, Cuspidality of symmetric powers with applications, Duke Math. J. 112 (2002), no. 1, 177–197. MR 1890650, DOI 10.1215/S0012-9074-02-11215-0
- A. W. Knapp, Local Langlands correspondence: the Archimedean case, Motives (Seattle, WA, 1991) Proc. Sympos. Pure Math., vol. 55, Amer. Math. Soc., Providence, RI, 1994, pp. 393–410. MR 1265560, DOI 10.1016/0022-4049(94)00057-p
- E. Kowalski and P. Michel, Zeros of families of automorphic $L$-functions close to 1, Pacific J. Math. 207 (2002), no. 2, 411–431. MR 1972253, DOI 10.2140/pjm.2002.207.411
- D. H. Lehmer, Some functions of Ramanujan, Math. Student 27 (1959), 105–116. MR 131412
- Wenzhi Luo, Values of symmetric square $L$-functions at $1$, J. Reine Angew. Math. 506 (1999), 215–235. MR 1665705, DOI 10.1515/crll.1999.007
- Hugh L. Montgomery, Topics in multiplicative number theory, Lecture Notes in Mathematics, Vol. 227, Springer-Verlag, Berlin-New York, 1971. MR 0337847
- R. A. Rankin, An $\Omega$-result for the coefficients of cusp forms, Math. Ann. 203 (1973), 239–250. MR 321876, DOI 10.1007/BF01629259
- Emmanuel Royer, Statistique de la variable aléatoire $L(\textrm {sym}^2f,1)$, Math. Ann. 321 (2001), no. 3, 667–687 (French, with English and French summaries). MR 1871974, DOI 10.1007/s002080100244
- Emmanuel Royer, Interprétation combinatoire des moments négatifs des valeurs de fonctions $L$ au bord de la bande critique, Ann. Sci. École Norm. Sup. (4) 36 (2003), no. 4, 601–620 (French, with English and French summaries). MR 2013928, DOI 10.1016/S0012-9593(03)00024-7
- E. Royer & J. Wu, Taille des valeurs de fonctions $L$ de carrés symétriques au bord de la bande critique, Revista Matemática Iberoamericana 21 (2005), 263–312.
- E. Royer & J. Wu, Central values, values at the edge of the critical strip of symmetric power $L$-functions and Hecke eigenvalues, preprint.
- Zeév Rudnick and Peter Sarnak, Zeros of principal $L$-functions and random matrix theory, Duke Math. J. 81 (1996), no. 2, 269–322. A celebration of John F. Nash, Jr. MR 1395406, DOI 10.1215/S0012-7094-96-08115-6
- Jean-Pierre Serre, Quelques applications du théorème de densité de Chebotarev, Inst. Hautes Études Sci. Publ. Math. 54 (1981), 323–401 (French). MR 644559
- Jean-Pierre Serre, Répartition asymptotique des valeurs propres de l’opérateur de Hecke $T_p$, J. Amer. Math. Soc. 10 (1997), no. 1, 75–102 (French). MR 1396897, DOI 10.1090/S0894-0347-97-00220-8
- Gérald Tenenbaum and Jie Wu, Moyennes de certaines fonctions multiplicatives sur les entiers friables, J. Reine Angew. Math. 564 (2003), 119–166 (French, with English summary). MR 2021037, DOI 10.1515/crll.2003.087
- E. C. Titchmarsh, Han-shu lun, Science Press, Peking, 1964 (Chinese). Translated from the English by Wu Chin. MR 0197687
- E. C. Titchmarsh, The theory of the Riemann zeta-function, 2nd ed., The Clarendon Press, Oxford University Press, New York, 1986. Edited and with a preface by D. R. Heath-Brown. MR 882550
Additional Information
- Yuk-Kam Lau
- Affiliation: Department of Mathematics, The University of Hong Kong, Pokfulam Road, Hong Kong
- Email: yklau@maths.hku.hk
- Jie Wu
- Affiliation: Institut Elie Cartan, UMR 7502 UHP-CNRS-INRIA, Université Henri Poincaré, 54506 Vandœuvre-lès-Nancy, France
- Email: wujie@iecn.u-nancy.fr
- Received by editor(s): November 8, 2003
- Received by editor(s) in revised form: June 23, 2004
- Published electronically: August 1, 2005
- © Copyright 2005
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 358 (2006), 441-472
- MSC (2000): Primary 11F67, 11F30
- DOI: https://doi.org/10.1090/S0002-9947-05-03774-8
- MathSciNet review: 2171241