Intrinsic ultracontractivity of the Feynman-Kac semigroup for relativistic stable processes
HTML articles powered by AMS MathViewer
- by Tadeusz Kulczycki and Bartłomiej Siudeja PDF
- Trans. Amer. Math. Soc. 358 (2006), 5025-5057 Request permission
Abstract:
Let $X_t$ be the relativistic $\alpha$-stable process in $\mathbf {R}^d$, $\alpha \in (0,2)$, $d > \alpha$, with infinitesimal generator $H_0^{(\alpha )}= - ((-\Delta +m^{2/\alpha })^{\alpha /2}-m)$. We study intrinsic ultracontractivity (IU) for the Feynman-Kac semigroup $T_t$ for this process with generator $H_0^{(\alpha )} - V$, $V \ge 0$, $V$ locally bounded. We prove that if $\lim _{|x| \to \infty } V(x) = \infty$, then for every $t >0$ the operator $T_t$ is compact. We consider the class $\mathcal {V}$ of potentials $V$ such that $V \ge 0$, $\lim _{|x| \to \infty } V(x) = \infty$ and $V$ is comparable to the function which is radial, radially nondecreasing and comparable on unit balls. For $V$ in the class $\mathcal {V}$ we show that the semigroup $T_t$ is IU if and only if $\lim _{|x| \to \infty } V(x)/|x| = \infty$. If this condition is satisfied we also obtain sharp estimates of the first eigenfunction $\phi _1$ for $T_t$. In particular, when $V(x) = |x|^{\beta }$, $\beta > 0$, then the semigroup $T_t$ is IU if and only if $\beta >1$. For $\beta >1$ the first eigenfunction $\phi _1(x)$ is comparable to \[ \exp (-m^{1/{\alpha }}|x|) (|x| + 1)^{(-d - \alpha - 2 \beta -1 )/2}.\]References
- Rodrigo Bañuelos, Intrinsic ultracontractivity and eigenfunction estimates for Schrödinger operators, J. Funct. Anal. 100 (1991), no. 1, 181–206. MR 1124298, DOI 10.1016/0022-1236(91)90107-G
- Rodrigo Bañuelos and Burgess Davis, A geometrical characterization of intrinsic ultracontractivity for planar domains with boundaries given by the graphs of functions, Indiana Univ. Math. J. 41 (1992), no. 4, 885–913. MR 1206335, DOI 10.1512/iumj.1992.41.41049
- Dominique Bakry, Étude des transformations de Riesz dans les variétés riemanniennes à courbure de Ricci minorée, Séminaire de Probabilités, XXI, Lecture Notes in Math., vol. 1247, Springer, Berlin, 1987, pp. 137–172 (French). MR 941980, DOI 10.1007/BFb0077631
- Dominique Bakry, La propriété de sous-harmonicité des diffusions dans les variétés, Séminaire de Probabilités, XXII, Lecture Notes in Math., vol. 1321, Springer, Berlin, 1988, pp. 1–50 (French). MR 960507, DOI 10.1007/BFb0084117
- Krzysztof Bogdan, The boundary Harnack principle for the fractional Laplacian, Studia Math. 123 (1997), no. 1, 43–80. MR 1438304, DOI 10.4064/sm-123-1-43-80
- Krzysztof Bogdan and Tomasz Byczkowski, Potential theory for the $\alpha$-stable Schrödinger operator on bounded Lipschitz domains, Studia Math. 133 (1999), no. 1, 53–92. MR 1671973, DOI 10.4064/sm-133-1-53-92
- Krzysztof Bogdan and Tomasz Byczkowski, Potential theory of Schrödinger operator based on fractional Laplacian, Probab. Math. Statist. 20 (2000), no. 2, Acta Univ. Wratislav. No. 2256, 293–335. MR 1825645
- Krzysztof Burdzy and Tadeusz Kulczycki, Stable processes have thorns, Ann. Probab. 31 (2003), no. 1, 170–194. MR 1959790, DOI 10.1214/aop/1046294308
- René Carmona, Path integrals for relativistic Schrödinger operators, Schrödinger operators (Sønderborg, 1988) Lecture Notes in Phys., vol. 345, Springer, Berlin, 1989, pp. 65–92. MR 1037317, DOI 10.1007/3-540-51783-9_{1}7
- René Carmona, Wen Chen Masters, and Barry Simon, Relativistic Schrödinger operators: asymptotic behavior of the eigenfunctions, J. Funct. Anal. 91 (1990), no. 1, 117–142. MR 1054115, DOI 10.1016/0022-1236(90)90049-Q
- Zhen-Qing Chen and Renming Song, Intrinsic ultracontractivity and conditional gauge for symmetric stable processes, J. Funct. Anal. 150 (1997), no. 1, 204–239. MR 1473631, DOI 10.1006/jfan.1997.3104
- Zhen-Qing Chen and Renming Song, Intrinsic ultracontractivity, conditional lifetimes and conditional gauge for symmetric stable processes on rough domains, Illinois J. Math. 44 (2000), no. 1, 138–160. MR 1731385
- Zhen-Qing Chen and Renming Song, Estimates on Green functions and Poisson kernels for symmetric stable processes, Math. Ann. 312 (1998), no. 3, 465–501. MR 1654824, DOI 10.1007/s002080050232
- Kai Lai Chung and Zhong Xin Zhao, From Brownian motion to Schrödinger’s equation, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 312, Springer-Verlag, Berlin, 1995. MR 1329992, DOI 10.1007/978-3-642-57856-4
- Ingrid Daubechies, One-electron molecules with relativistic kinetic energy: properties of the discrete spectrum, Comm. Math. Phys. 94 (1984), no. 4, 523–535. MR 763750, DOI 10.1007/BF01403885
- Ingrid Daubechies and Elliott H. Lieb, One-electron relativistic molecules with Coulomb interaction, Comm. Math. Phys. 90 (1983), no. 4, 497–510. MR 719430, DOI 10.1007/BF01216181
- E. B. Davies, Heat kernels and spectral theory, Cambridge Tracts in Mathematics, vol. 92, Cambridge University Press, Cambridge, 1989. MR 990239, DOI 10.1017/CBO9780511566158
- E. B. Davies and B. Simon, Ultracontractivity and the heat kernel for Schrödinger operators and Dirichlet Laplacians, J. Funct. Anal. 59 (1984), no. 2, 335–395. MR 766493, DOI 10.1016/0022-1236(84)90076-4
- Burgess Davis, Intrinsic ultracontractivity and the Dirichlet Laplacian, J. Funct. Anal. 100 (1991), no. 1, 162–180. MR 1124297, DOI 10.1016/0022-1236(91)90106-F
- Charles Fefferman, The $N$-body problem in quantum mechanics, Comm. Pure Appl. Math. 39 (1986), no. S, suppl., S67–S109. Frontiers of the mathematical sciences: 1985 (New York, 1985). MR 861484, DOI 10.1002/cpa.3160390707
- C. Fefferman and R. de la Llave, Relativistic stability of matter. I, Rev. Mat. Iberoamericana 2 (1986), no. 1-2, 119–213. MR 864658, DOI 10.4171/RMI/30
- Ira W. Herbst, Spectral theory of the operator $(p^{2}+m^{2})^{1/2}-Ze^{2}/r$, Comm. Math. Phys. 53 (1977), no. 3, 285–294. MR 436854
- Nobuyuki Ikeda and Shinzo Watanabe, On some relations between the harmonic measure and the Lévy measure for a certain class of Markov processes, J. Math. Kyoto Univ. 2 (1962), 79–95. MR 142153, DOI 10.1215/kjm/1250524975
- Tadeusz Kulczycki, Intrinsic ultracontractivity for symmetric stable processes, Bull. Polish Acad. Sci. Math. 46 (1998), no. 3, 325–334. MR 1643611
- Elliott H. Lieb, The stability of matter, Rev. Modern Phys. 48 (1976), no. 4, 553–569. MR 0456083, DOI 10.1103/RevModPhys.48.553
- Elliott H. Lieb and Horng-Tzer Yau, The stability and instability of relativistic matter, Comm. Math. Phys. 118 (1988), no. 2, 177–213. MR 956165, DOI 10.1007/BF01218577
- MichałRyznar, Estimates of Green function for relativistic $\alpha$-stable process, Potential Anal. 17 (2002), no. 1, 1–23. MR 1906405, DOI 10.1023/A:1015231913916
- Barry Simon, Schrödinger semigroups, Bull. Amer. Math. Soc. (N.S.) 7 (1982), no. 3, 447–526. MR 670130, DOI 10.1090/S0273-0979-1982-15041-8
- Z. Zhao, A probabilistic principle and generalized Schrödinger perturbation, J. Funct. Anal. 101 (1991), no. 1, 162–176. MR 1132313, DOI 10.1016/0022-1236(91)90153-V
Additional Information
- Tadeusz Kulczycki
- Affiliation: Institute of Mathematics, Wrocław University of Technology, Wyb. Wyspianskiego 27, 50-370 Wrocław, Poland
- Email: tkulczyc@im.pwr.wroc.pl
- Bartłomiej Siudeja
- Affiliation: Department of Mathematics, Purdue University, West Lafayette, Indiana 47906
- Email: siudeja@math.purdue.edu
- Received by editor(s): March 23, 2004
- Received by editor(s) in revised form: November 11, 2004
- Published electronically: June 13, 2006
- Additional Notes: This work was supported by KBN grant 2 P03A 041 22 and RTN Harmonic Analysis and Related Problems, contract HPRN-CT-2001-00273-HARP
- © Copyright 2006
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 358 (2006), 5025-5057
- MSC (2000): Primary 47G30, 60G51
- DOI: https://doi.org/10.1090/S0002-9947-06-03931-6
- MathSciNet review: 2231884