Tangentially positive isometric actions and conjugate points

Author:
Raúl M. Aguilar

Journal:
Trans. Amer. Math. Soc. **359** (2007), 789-825

MSC (2000):
Primary 53C20, 53C22, 53D20, 53D25

DOI:
https://doi.org/10.1090/S0002-9947-06-03920-1

Published electronically:
September 11, 2006

MathSciNet review:
2255197

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $\left ({\mathrm {M}}, g\right )$ be a complete Riemannian manifold with no conjugate points and $f\colon \left ({\mathrm {M}}, g\right ) \to \left ({\mathrm {B}}, g_{\mathrm {B}}\right )$ a principal $G$-bundle, where $G$ is a Lie group acting by isometries and ${\mathrm {B}}$ the smooth quotient with $g_{\mathrm {B}}$ the Riemannian submersion metric. We obtain a characterization of conjugate point-free quotients $\left ({\mathrm {B}}, g_{\mathrm {B}}\right )$ in terms of symplectic reduction and a canonical pseudo-Riemannian metric on the tangent bundle $T{\mathrm {M}}$, from which we then derive necessary conditions, involving $G$ and ${\mathrm {M}}$, for the quotient metric to be conjugate point-free, particularly for ${\mathrm {M}}$ a reducible Riemannian manifold. Let ${\mu _G}\colon T{\mathrm {M}}\to {\mathfrak {G}}^*$, with ${\mathfrak {G}}$ the Lie Algebra of $G$, be the moment map of the tangential $G$-action on $T{\mathrm {M}}$ and let ${\mathbf {G}}_{\mathbf {P}}$ be the canonical pseudo-Riemannian metric on $T{\mathrm {M}}$ defined by the symplectic form $d\Theta$ and the map $F\colon T{\mathrm {M}}\to {\mathrm {M}}\times {\mathrm {M}}$, $F(z)=\left ( \exp (-z), \exp (z)\right )$. First we prove a theorem, stating that if ${\mathbf {G}}_{\mathbf {P}}$ is not positive definite on the action vector fields for the tangential action along ${\mu _G}^{-1}(0)$ then $\left ({\mathrm {B}},g_{\mathrm {B}}\right )$ acquires conjugate points. (We proved the converse result in 2005.) Then, we characterize self-parallel vector fields on ${\mathrm {M}}$ in terms of the positivity of the ${\mathbf {G}}_{\mathbf {P}}$-length of their tangential lifts along certain canonical subsets of $T{\mathrm {M}}$. We use this to derive some necessary conditions, on $G$ and ${\mathrm {M}}$, for actions to be tangentially positive on relevant subsets of $T{\mathrm {M}}$, which we then apply to isometric actions on complete conjugate point-free reducible Riemannian manifolds when one of the irreducible factors satisfies certain curvature conditions.

- Raúl M. Aguilar,
*Moment map, a product structure, and Riemannian metrics with no conjugate points*, Comm. Anal. Geom.**13**(2005), no. 2, 401–438. MR**2154825** - Raúl M. Aguilar,
*Symplectic reduction and the homogeneous complex Monge-Ampère equation*, Ann. Global Anal. Geom.**19**(2001), no. 4, 327–353. MR**1842574**, DOI https://doi.org/10.1023/A%3A1010715415333 - S. Bochner,
*Vector fields and Ricci curvature*, Bull. Amer. Math. Soc.**52**(1946), 776–797. MR**18022**, DOI https://doi.org/10.1090/S0002-9904-1946-08647-4 - Nicolas Bourbaki,
*Lie groups and Lie algebras. Chapters 1–3*, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 1989. Translated from the French; Reprint of the 1975 edition. MR**979493** - Peter Dombrowski,
*On the geometry of the tangent bundle*, J. Reine Angew. Math.**210**(1962), 73–88. MR**141050**, DOI https://doi.org/10.1515/crll.1962.210.73 - Victor Guillemin and Matthew Stenzel,
*Grauert tubes and the homogeneous Monge-Ampère equation*, J. Differential Geom.**34**(1991), no. 2, 561–570. MR**1131444** - Robert Hermann,
*A sufficient condition that a mapping of Riemannian manifolds be a fibre bundle*, Proc. Amer. Math. Soc.**11**(1960), 236–242. MR**112151**, DOI https://doi.org/10.1090/S0002-9939-1960-0112151-4 - N. J. Hitchin, A. Karlhede, U. Lindström, and M. Roček,
*Hyper-Kähler metrics and supersymmetry*, Comm. Math. Phys.**108**(1987), no. 4, 535–589. MR**877637** - Wilhelm Klingenberg,
*Riemannian geometry*, de Gruyter Studies in Mathematics, vol. 1, Walter de Gruyter & Co., Berlin-New York, 1982. MR**666697** - Shoshichi Kobayashi,
*Transformation groups in differential geometry*, Classics in Mathematics, Springer-Verlag, Berlin, 1995. Reprint of the 1972 edition. MR**1336823** - Shoshichi Kobayashi and Katsumi Nomizu,
*Foundations of differential geometry. Vol I*, Interscience Publishers, a division of John Wiley & Sons, New York-London, 1963. MR**0152974** - Shoshichi Kobayashi and Katsumi Nomizu,
*Foundations of differential geometry. Vol. II*, Interscience Tracts in Pure and Applied Mathematics, No. 15 Vol. II, Interscience Publishers John Wiley & Sons, Inc., New York-London-Sydney, 1969. MR**0238225** - László Lempert and Róbert Szőke,
*Global solutions of the homogeneous complex Monge-Ampère equation and complex structures on the tangent bundle of Riemannian manifolds*, Math. Ann.**290**(1991), no. 4, 689–712. MR**1119947**, DOI https://doi.org/10.1007/BF01459268 - Jerrold Marsden and Alan Weinstein,
*Reduction of symplectic manifolds with symmetry*, Rep. Mathematical Phys.**5**(1974), no. 1, 121–130. MR**402819**, DOI https://doi.org/10.1016/0034-4877%2874%2990021-4 - Barrett O’Neill,
*The fundamental equations of a submersion*, Michigan Math. J.**13**(1966), 459–469. MR**200865**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2000):
53C20,
53C22,
53D20,
53D25

Retrieve articles in all journals with MSC (2000): 53C20, 53C22, 53D20, 53D25

Additional Information

**Raúl M. Aguilar**

Affiliation:
Massachusetts Maritime Academy, Buzzards Bay, Massachusetts 02562

Email:
raguilar@maritime.edu

Keywords:
Moment map,
isometric action,
conjugate points,
symplectic reduction.

Received by editor(s):
January 8, 2004

Received by editor(s) in revised form:
December 16, 2004

Published electronically:
September 11, 2006

Article copyright:
© Copyright 2006
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.