## Small ball probabilities for the Slepian Gaussian fields

HTML articles powered by AMS MathViewer

- by Fuchang Gao and Wenbo V. Li PDF
- Trans. Amer. Math. Soc.
**359**(2007), 1339-1350 Request permission

## Abstract:

The $d$-dimensional Slepian Gaussian random field $\{S({\mathbf {t}}), {\mathbf {t}} \in \mathbb {R}_+^d\}$ is a mean zero Gaussian process with covariance function $\mathbb {E} S({\mathbf {s}})S({\mathbf {t}})= \prod _{i=1}^d \max (0, a_i-\left | s_i-t_i\right | )$ for $a_i>0$ and ${\mathbf {t}}=(t_1, \cdots , t_d) \in \mathbb {R}_+^d$. Small ball probabilities for $S({\mathbf {t}})$ are obtained under the $L_2$-norm on $[0,1]^d$, and under the sup-norm on $[0,1]^2$ which implies Talagrand’s result for the Brownian sheet. The method of proof for the sup-norm case is purely probabilistic and analytic, and thus avoids ingenious combinatoric arguments of using decreasing mathematical induction. In particular, Riesz product techniques are new ingredients in our arguments.## References

- Robert J. Adler,
*The supremum of a particular Gaussian field*, Ann. Probab.**12**(1984), no. 2, 436–444. MR**735847** - Richard F. Bass,
*Probability estimates for multiparameter Brownian processes*, Ann. Probab.**16**(1988), no. 1, 251–264. MR**920269** - E. S. Belinsky,
*Estimates of entropy numbers and Gaussian measures for classes of functions with bounded mixed derivative*, J. Approx. Theory**93**(1998), no. 1, 114–127. MR**1612794**, DOI 10.1006/jath.1997.3157 - Eduard Belinsky and Werner Linde,
*Small ball probabilities of fractional Brownian sheets via fractional integration operators*, J. Theoret. Probab.**15**(2002), no. 3, 589–612. MR**1922439**, DOI 10.1023/A:1016263614257 - E. Csáki,
*On small values of the square integral of a multiparameter Wiener process*, Statistics and probability (Visegrád, 1982) Reidel, Dordrecht, 1984, pp. 19–26. MR**758997** - Thomas Dunker,
*Estimates for the small ball probabilities of the fractional Brownian sheet*, J. Theoret. Probab.**13**(2000), no. 2, 357–382. MR**1777539**, DOI 10.1023/A:1007897525164 - T. Dunker, W. Linde, T. Kühn, and M. A. Lifshits,
*Metric entropy of integration operators and small ball probabilities for the Brownian sheet*, J. Approx. Theory**101**(1999), no. 1, 63–77. MR**1724026**, DOI 10.1006/jath.1999.3354 - James Allen Fill and Fred Torcaso,
*Asymptotic analysis via Mellin transforms for small deviations in $L^2$-norm of integrated Brownian sheets*, Probab. Theory Related Fields**130**(2004), no. 2, 259–288. MR**2093764**, DOI 10.1007/s00440-004-0363-x - Fuchang Gao, Jan Hannig, Tzong-Yow Lee, and Fred Torcaso,
*Laplace transforms via Hadamard factorization*, Electron. J. Probab.**8**(2003), no. 13, 20. MR**1998764**, DOI 10.1214/EJP.v8-151 - Gao, F. and Li, W.V. (2004). Logarithmic level comparison for small deviation probabilities,
*J. Theory Probab.*, 2006, DOI 10.1007/s10959-006-0026-1 (online). - A. Karol, A. Nazarov and Ya. Nikitin (2003), Tensor products of compact operators and logarithmic $L_2$-small ball asymptotics for Gaussian random fields,
*Preprint*. - James Kuelbs and Wenbo V. Li,
*Metric entropy and the small ball problem for Gaussian measures*, J. Funct. Anal.**116**(1993), no. 1, 133–157. MR**1237989**, DOI 10.1006/jfan.1993.1107 - Wenbo V. Li,
*Comparison results for the lower tail of Gaussian seminorms*, J. Theoret. Probab.**5**(1992), no. 1, 1–31. MR**1144725**, DOI 10.1007/BF01046776 - Wenbo V. Li and Werner Linde,
*Approximation, metric entropy and small ball estimates for Gaussian measures*, Ann. Probab.**27**(1999), no. 3, 1556–1578. MR**1733160**, DOI 10.1214/aop/1022677459 - W. V. Li and Q.-M. Shao,
*Gaussian processes: inequalities, small ball probabilities and applications*, Stochastic processes: theory and methods, Handbook of Statist., vol. 19, North-Holland, Amsterdam, 2001, pp. 533–597. MR**1861734**, DOI 10.1016/S0169-7161(01)19019-X - Lifshits, M.A., and Tsyrelson, B.S. (1986). Small ball deviations of Gaussian fields.
*Theor. Probab. Appl.***31**, 557-558. - A. Martin,
*Small ball asymptotics for the stochastic wave equation*, J. Theoret. Probab.**17**(2004), no. 3, 693–703. MR**2091556**, DOI 10.1023/B:JOTP.0000040294.12188.cd - Michel Talagrand,
*The small ball problem for the Brownian sheet*, Ann. Probab.**22**(1994), no. 3, 1331–1354. MR**1303647** - V. N. Temlyakov,
*An inequality for trigonometric polynomials and its application for estimating the entropy numbers*, J. Complexity**11**(1995), no. 2, 293–307. MR**1334238**, DOI 10.1006/jcom.1995.1012

## Additional Information

**Fuchang Gao**- Affiliation: Department of Mathematics, University of Idaho, Moscow, Idaho 83844
- MR Author ID: 290983
- Email: fuchang@uidaho.edu
**Wenbo V. Li**- Affiliation: Department of Mathematical Sciences, University of Delaware, Newark, Delaware 19716
- Email: wli@math.udel.edu
- Received by editor(s): October 28, 2004
- Received by editor(s) in revised form: February 2, 2005
- Published electronically: October 16, 2006
- Additional Notes: The first author was supported in part by NSF Grants EPS-0132626 and DMS-0405855

The second author was supported in part by NSF Grant DMS-0204513 - © Copyright 2006
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc.
**359**(2007), 1339-1350 - MSC (2000): Primary 60G15; Secondary 42A55
- DOI: https://doi.org/10.1090/S0002-9947-06-03963-8
- MathSciNet review: 2262853