CM points on products of Drinfeld modular curves
HTML articles powered by AMS MathViewer
- by Florian Breuer PDF
- Trans. Amer. Math. Soc. 359 (2007), 1351-1374 Request permission
Abstract:
Let $X$ be a product of Drinfeld modular curves over a general base ring $A$ of odd characteristic. We classify those subvarieties of $X$ which contain a Zariski-dense subset of CM points. This is an analogue of the André-Oort conjecture. As an application, we construct non-trivial families of higher Heegner points on modular elliptic curves over global function fields.References
- Yves André, Finitude des couples d’invariants modulaires singuliers sur une courbe algébrique plane non modulaire, J. Reine Angew. Math. 505 (1998), 203–208 (French, with English summary). MR 1662256, DOI 10.1515/crll.1998.118
- Florian Breuer, Higher Heegner points on elliptic curves over function fields, J. Number Theory 104 (2004), no. 2, 315–326. MR 2029509, DOI 10.1016/j.jnt.2003.09.001
- Florian Breuer, The André-Oort conjecture for products of Drinfeld modular curves, J. Reine Angew. Math. 579 (2005), 115–144. MR 2124020, DOI 10.1515/crll.2005.2005.579.115
- Bas Edixhoven, Special points on products of modular curves, Duke Math. J. 126 (2005), no. 2, 325–348. MR 2115260, DOI 10.1215/S0012-7094-04-12624-7
- Michael D. Fried and Moshe Jarden, Field arithmetic, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 11, Springer-Verlag, Berlin, 1986. MR 868860, DOI 10.1007/978-3-662-07216-5
- William Fulton, Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 2, Springer-Verlag, Berlin, 1984. MR 732620, DOI 10.1007/978-3-662-02421-8
- Ernst-Ulrich Gekeler, Drinfel′d modular curves, Lecture Notes in Mathematics, vol. 1231, Springer-Verlag, Berlin, 1986. MR 874338, DOI 10.1007/BFb0072692
- E.-U. Gekeler and M. Reversat, Jacobians of Drinfeld modular curves, J. Reine Angew. Math. 476 (1996), 27–93. MR 1401696, DOI 10.1515/crll.1996.476.27
- David Goss, Basic structures of function field arithmetic, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 35, Springer-Verlag, Berlin, 1996. MR 1423131, DOI 10.1007/978-3-642-61480-4
- David R. Hayes, Explicit class field theory in global function fields, Studies in algebra and number theory, Adv. in Math. Suppl. Stud., vol. 6, Academic Press, New York-London, 1979, pp. 173–217. MR 535766
- David R. Hayes, A brief introduction to Drinfel′d modules, The arithmetic of function fields (Columbus, OH, 1991) Ohio State Univ. Math. Res. Inst. Publ., vol. 2, de Gruyter, Berlin, 1992, pp. 1–32. MR 1196509
- Jean Dieudonné, On the automorphisms of the classical groups, Memoirs of the American Mathematical Society, No. 2, American Mathematical Society, Providence, R.I., 1980. With a supplement by Loo Keng Hua [Luo Geng Hua]; Reprint of the 1951 original. MR 606555
- G.-J. van der Heiden, “Weil pairing and the Drinfeld modular curve”, Ph.D. thesis, Rijksuniversiteit Groningen, 2003.
- Werner Lütkebohmert, Der Satz von Remmert-Stein in der nichtarchimedischen Funktionentheorie, Math. Z. 139 (1974), 69–84 (German). MR 352527, DOI 10.1007/BF01194146
- Jürgen Neukirch, Algebraic number theory, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 322, Springer-Verlag, Berlin, 1999. Translated from the 1992 German original and with a note by Norbert Schappacher; With a foreword by G. Harder. MR 1697859, DOI 10.1007/978-3-662-03983-0
- Jean-Pierre Serre, Trees, Springer-Verlag, Berlin-New York, 1980. Translated from the French by John Stillwell. MR 607504, DOI 10.1007/978-3-642-61856-7
- Henning Stichtenoth, Algebraic function fields and codes, Universitext, Springer-Verlag, Berlin, 1993. MR 1251961
Additional Information
- Florian Breuer
- Affiliation: Department of Mathematical Sciences, University of Stellenbosch, Stellenbosch, 7600, South Africa
- MR Author ID: 631084
- ORCID: 0000-0001-5888-7685
- Email: fbreuer@sun.ac.za
- Received by editor(s): September 20, 2004
- Received by editor(s) in revised form: March 1, 2005
- Published electronically: September 19, 2006
- © Copyright 2006
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 359 (2007), 1351-1374
- MSC (2000): Primary 11G09; Secondary 14G35
- DOI: https://doi.org/10.1090/S0002-9947-06-04109-2
- MathSciNet review: 2262854