## Invariance principles for iterated maps that contract on average

HTML articles powered by AMS MathViewer

- by C. P. Walkden PDF
- Trans. Amer. Math. Soc.
**359**(2007), 1081-1097 Request permission

## Abstract:

We consider iterated function schemes that contract on average. Using a transfer operator approach, we prove a version of the almost sure invariance principle. This allows the system to be modelled by a Brownian motion, up to some error term. It follows that many classical statistical properties hold for such systems, such as the weak invariance principle and the law of the iterated logarithm.## References

- M. F. Barnsley, S. G. Demko, J. H. Elton, and J. S. Geronimo,
*Invariant measures for Markov processes arising from iterated function systems with place-dependent probabilities*, Ann. Inst. H. Poincaré Probab. Statist.**24**(1988), no. 3, 367–394 (English, with French summary). MR**971099** - Manfred Denker and Walter Philipp,
*Approximation by Brownian motion for Gibbs measures and flows under a function*, Ergodic Theory Dynam. Systems**4**(1984), no. 4, 541–552. MR**779712**, DOI 10.1017/S0143385700002637 - Persi Diaconis and David Freedman,
*Iterated random functions*, SIAM Rev.**41**(1999), no. 1, 45–76. MR**1669737**, DOI 10.1137/S0036144598338446 - John H. Elton,
*An ergodic theorem for iterated maps*, Ergodic Theory Dynam. Systems**7**(1987), no. 4, 481–488. MR**922361**, DOI 10.1017/S0143385700004168 - John H. Elton,
*A multiplicative ergodic theorem for Lipschitz maps*, Stochastic Process. Appl.**34**(1990), no. 1, 39–47. MR**1039561**, DOI 10.1016/0304-4149(90)90055-W - William Feller,
*An introduction to probability theory and its applications. Vol. II*, John Wiley & Sons, Inc., New York-London-Sydney, 1966. MR**0210154** - Michael Field, Ian Melbourne, and Andrew Török,
*Decay of correlations, central limit theorems and approximation by Brownian motion for compact Lie group extensions*, Ergodic Theory Dynam. Systems**23**(2003), no. 1, 87–110. MR**1971198**, DOI 10.1017/S0143385702000901 - P. Hall and C. C. Heyde,
*Martingale limit theory and its application*, Probability and Mathematical Statistics, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1980. MR**624435** - Ian Melbourne and Andrei Török,
*Central limit theorems and invariance principles for time-one maps of hyperbolic flows*, Comm. Math. Phys.**229**(2002), no. 1, 57–71. MR**1917674**, DOI 10.1007/s00220-002-0676-5 - Marc Peigné,
*Iterated function systems and spectral decomposition of the associated Markov operator*, Fascicule de probabilités, Publ. Inst. Rech. Math. Rennes, vol. 1993, Univ. Rennes I, Rennes, 1993, pp. 28 (English, with English and French summaries). MR**1347702** - Walter Philipp and William Stout,
*Almost sure invariance principles for partial sums of weakly dependent random variables*, Mem. Amer. Math. Soc.**2**(1975), no. 161,, 161, iv+140. MR**433597**, DOI 10.1090/memo/0161 - M. Pollicott,
*Contraction in mean and transfer operators*, Dyn. Syst.**16**(2001), no. 1, 97–106. MR**1835908**, DOI 10.1080/02681110010017840 - Mark Pollicott and Richard Sharp,
*Invariance principles for interval maps with an indifferent fixed point*, Comm. Math. Phys.**229**(2002), no. 2, 337–346. MR**1923178**, DOI 10.1007/s00220-002-0685-4 - V. Strassen,
*An invariance principle for the law of the iterated logarithm*, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete**3**(1964), 211–226 (1964). MR**175194**, DOI 10.1007/BF00534910 - V. Strassen,
*Almost-sure behaviour of sums of independent random variables and martingales*, Proc. Fifth Berkeley Symp. Math. Stat. Prob.,**2**(1965), 314–343.

## Additional Information

**C. P. Walkden**- Affiliation: School of Mathematics, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
- Email: cwalkden@maths.man.ac.uk
- Received by editor(s): March 19, 2003
- Received by editor(s) in revised form: November 25, 2004
- Published electronically: October 17, 2006
- © Copyright 2006
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc.
**359**(2007), 1081-1097 - MSC (2000): Primary 60F17; Secondary 37H99, 37A50
- DOI: https://doi.org/10.1090/S0002-9947-06-04322-4
- MathSciNet review: 2262842