The McMullen domain: Rings around the boundary
HTML articles powered by AMS MathViewer
- by Robert L. Devaney and Sebastian M. Marotta PDF
- Trans. Amer. Math. Soc. 359 (2007), 3251-3273 Request permission
Abstract:
In this paper we show that there are infinitely many rings ${\mathcal S}^k, k \geq 1$, around the McMullen domain in the parameter plane for the family of complex rational maps of the form $z^n + \lambda /z^n$ where $\lambda \in \mathbb {C}$ and $n \geq 3$. These rings converge to the boundary of the McMullen domain as $k \rightarrow \infty$. The rings ${\mathcal S}^k$ contain $(n-2)n^{k-1} + 1$ parameter values that lie at the center of Sierpinski holes. That is, these parameters lie at the center of an open set in the parameter plane in which all of the corresponding maps have Julia sets that are Sierpinski curves. The rings also contain the same number of superstable parameter values, i.e., parameter values for which one of the critical points is periodic of period either $k$ or $2k$.References
- Paul Blanchard, Robert L. Devaney, Daniel M. Look, Pradipta Seal, and Yakov Shapiro, Sierpinski-curve Julia sets and singular perturbations of complex polynomials, Ergodic Theory Dynam. Systems 25 (2005), no. 4, 1047–1055. MR 2158396, DOI 10.1017/S0143385704000380
- Robert L. Devaney, Baby Mandelbrot sets adorned with halos in families of rational maps, Complex dynamics, Contemp. Math., vol. 396, Amer. Math. Soc., Providence, RI, 2006, pp. 37–50. MR 2209085, DOI 10.1090/conm/396/07392
- Robert L. Devaney, Structure of the McMullen domain in the parameter planes for rational maps, Fund. Math. 185 (2005), no. 3, 267–285. MR 2161407, DOI 10.4064/fm185-3-5
- Devaney, R. L., The McMullen Domain: Satellite Mandelbrot Sets and Sierpinski Holes. To appear.
- Devaney, R. L. and Look, D. M., A Criterion for Sierpinski Curve Julia Sets. To appear in Topology Proceedings.
- Robert L. Devaney, Daniel M. Look, and David Uminsky, The escape trichotomy for singularly perturbed rational maps, Indiana Univ. Math. J. 54 (2005), no. 6, 1621–1634. MR 2189680, DOI 10.1512/iumj.2005.54.2615
- A. Douady and J. H. Hubbard, Étude dynamique des polynômes complexes. Partie I, Publications Mathématiques d’Orsay [Mathematical Publications of Orsay], vol. 84, Université de Paris-Sud, Département de Mathématiques, Orsay, 1984 (French). MR 762431
- Adrien Douady and John Hamal Hubbard, On the dynamics of polynomial-like mappings, Ann. Sci. École Norm. Sup. (4) 18 (1985), no. 2, 287–343. MR 816367, DOI 10.24033/asens.1491
- Curt McMullen, Automorphisms of rational maps, Holomorphic functions and moduli, Vol. I (Berkeley, CA, 1986) Math. Sci. Res. Inst. Publ., vol. 10, Springer, New York, 1988, pp. 31–60. MR 955807, DOI 10.1007/978-1-4613-9602-4_{3}
- Curtis T. McMullen, The classification of conformal dynamical systems, Current developments in mathematics, 1995 (Cambridge, MA), Int. Press, Cambridge, MA, 1994, pp. 323–360. MR 1474980
- John Milnor, Dynamics in one complex variable, Friedr. Vieweg & Sohn, Braunschweig, 1999. Introductory lectures. MR 1721240
- John Milnor, Geometry and dynamics of quadratic rational maps, Experiment. Math. 2 (1993), no. 1, 37–83. With an appendix by the author and Lei Tan. MR 1246482, DOI 10.1080/10586458.1993.10504267
- Carsten Lunde Petersen and Gustav Ryd, Convergence of rational rays in parameter spaces, The Mandelbrot set, theme and variations, London Math. Soc. Lecture Note Ser., vol. 274, Cambridge Univ. Press, Cambridge, 2000, pp. 161–172. MR 1765088
- Roesch, P., On Captures for the Family $f_\lambda (z) = z^2 + \lambda /z^2$. To appear.
- G. T. Whyburn, Topological characterization of the Sierpiński curve, Fund. Math. 45 (1958), 320–324. MR 99638, DOI 10.4064/fm-45-1-320-324
Additional Information
- Robert L. Devaney
- Affiliation: Department of Mathematics, Boston University, 111 Cummington Street, Boston, Massachusetts 02215
- MR Author ID: 57240
- Sebastian M. Marotta
- Affiliation: Department of Mathematics, Boston University, 111 Cummington Street, Boston, Massachusetts 02215
- Received by editor(s): May 5, 2005
- Published electronically: February 13, 2007
- © Copyright 2007
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 359 (2007), 3251-3273
- MSC (2000): Primary 37F10; Secondary 37F45
- DOI: https://doi.org/10.1090/S0002-9947-07-04137-2
- MathSciNet review: 2299454