Extension d’une valuation

Author:
Michel Vaquié

Journal:
Trans. Amer. Math. Soc. **359** (2007), 3439-3481

MSC (2000):
Primary 13A18; Secondary 12J10, 14E15

DOI:
https://doi.org/10.1090/S0002-9947-07-04184-0

Published electronically:
February 12, 2007

MathSciNet review:
2299463

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We want to determine all the extensions of a valuation $\nu$ of a field $K$ to a cyclic extension $L$ of $K$, i.e. $L=K(x)$ is the field of rational functions of $x$ or $L=K(\theta )$ is the finite separable extension generated by a root $\theta$ of an irreducible polynomial $G(x)$. In two articles from 1936, Saunders MacLane has introduced the notions of *key polynomial* and of *augmented valuation* for a given valuation $\mu$ of $K[x]$, and has shown how we can recover any extension to $L$ of a discrete rank one valuation $\nu$ of $K$ by a countable sequence of augmented valuations $\bigl (\mu _i\bigr ) _{i \in I}$, with $I \subset \mathbb N$. The valuation $\mu _i$ is defined by induction from the valuation $\mu _{i-1}$, from a key polynomial $\phi _i$ and from the value $\gamma _i = \mu ( \phi _i )$. In this article we study some properties of the augmented valuations and we generalize the results of MacLane to the case of any valuation $\nu$ of $K$. For this we need to introduce *simple admissible families* of augmented valuations ${\mathcal A} = \bigl ( \mu _{\alpha } \bigr ) _{\alpha \in A}$, where $A$ is not necessarily a countable set, and to define a *limit key polynomial* and *limit augmented valuation* for such families. Then, any extension $\mu$ to $L$ of a valuation $\nu$ on $K$ is again a limit of a family of augmented valuations. We also get a “factorization” theorem which gives a description of the values $( \mu _{\alpha } (f))$ for any polynomial $f$ in $K[x]$.

- Shreeram S. Abhyankar and Tzuong Tsieng Moh,
*Newton-Puiseux expansion and generalized Tschirnhausen transformation. I, II*, J. Reine Angew. Math.**260**(1973), 47–83; ibid. 261 (1973), 29–54. MR**337955**, DOI https://doi.org/10.1515/crll.1973.260.47 - V. Alexandru, N. Popescu, and A. Zaharescu,
*All valuations on $K(X)$*, J. Math. Kyoto Univ.**30**(1990), no. 2, 281–296. MR**1068792**, DOI https://doi.org/10.1215/kjm/1250520072 - Irving Kaplansky,
*Maximal fields with valuations*, Duke Math. J.**9**(1942), 303–321. MR**6161** - Sudesh K. Khanduja and Usha Garg,
*Rank $2$ valuations of $K(x)$*, Mathematika**37**(1990), no. 1, 97–105. MR**1067891**, DOI https://doi.org/10.1112/S0025579300012833 - Franz-Viktor Kuhlmann,
*Valuation theoretic and model theoretic aspects of local uniformization*, Resolution of singularities (Obergurgl, 1997) Progr. Math., vol. 181, Birkhäuser, Basel, 2000, pp. 381–456. MR**1748629** - Saunders MacLane,
*A construction for absolute values in polynomial rings*, Trans. Amer. Math. Soc.**40**(1936), no. 3, 363–395. MR**1501879**, DOI https://doi.org/10.1090/S0002-9947-1936-1501879-8 - Saunders Mac Lane,
*A construction for prime ideals as absolute values of an algebraic field*, Duke Math. J.**2**(1936), no. 3, 492–510. MR**1545943**, DOI https://doi.org/10.1215/S0012-7094-36-00243-0 - Patrick Popescu-Pampu,
*Approximate roots*, Valuation theory and its applications, Vol. II (Saskatoon, SK, 1999) Fields Inst. Commun., vol. 33, Amer. Math. Soc., Providence, RI, 2003, pp. 285–321. MR**2018562** - Liliana Popescu and Nicolae Popescu,
*On the residual transcendental extensions of a valuation. Key polynomials and augmented valuation*, Tsukuba J. Math.**15**(1991), no. 1, 57–78. MR**1118582**, DOI https://doi.org/10.21099/tkbjm/1496161567 - Nicolae Popescu and Constantin Vraciu,
*On the extension of valuations on a field $K$ to $K(X)$. I*, Rend. Sem. Mat. Univ. Padova**87**(1992), 151–168. MR**1183907** - M. Spivakovsky: Resolution of singularities I: local uniformization, prépublication 1996.
- Bernard Teissier,
*Valuations, deformations, and toric geometry*, Valuation theory and its applications, Vol. II (Saskatoon, SK, 1999) Fields Inst. Commun., vol. 33, Amer. Math. Soc., Providence, RI, 2003, pp. 361–459. MR**2018565** - Michel Vaquié,
*Valuations*, Resolution of singularities (Obergurgl, 1997) Progr. Math., vol. 181, Birkhäuser, Basel, 2000, pp. 539–590 (French). MR**1748635**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2000):
13A18,
12J10,
14E15

Retrieve articles in all journals with MSC (2000): 13A18, 12J10, 14E15

Additional Information

**Michel Vaquié**

Affiliation:
Laboratoire Émile Picard, UMR 5580, Université Paul Sabatier, UFR MIG, 31062 Toulouse Cedex 9, France

Email:
vaquie@math.ups-tlse.fr

Received by editor(s):
March 29, 2004

Received by editor(s) in revised form:
July 18, 2005

Published electronically:
February 12, 2007

Article copyright:
© Copyright 2007
American Mathematical Society