Bases for some reciprocity algebras I
Authors:
Roger Howe and Soo Teck Lee
Journal:
Trans. Amer. Math. Soc. 359 (2007), 4359-4387
MSC (2000):
Primary 22E46
DOI:
https://doi.org/10.1090/S0002-9947-07-04142-6
Published electronically:
March 20, 2007
MathSciNet review:
2309189
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: For a complex vector space , let
be the algebra of polynomial functions on
. In this paper, we construct bases for the algebra of all
highest weight vectors in
, where
and
for all
, and the algebra of
highest weight vectors in
.
- [BBL] G. M. Benkart, D. J. Britten, and F. W. Lemire, Stability in modules for classical Lie algebras—a constructive approach, Mem. Amer. Math. Soc. 85 (1990), no. 430, vi+165. MR 1010997, https://doi.org/10.1090/memo/0430
- [BL] M. Brion and V. Lakshmibai, A geometric approach to standard monomial theory, Represent. Theory 7 (2003), 651–680. MR 2017071, https://doi.org/10.1090/S1088-4165-03-00211-5
- [BZ] A. D. Berenstein and A. V. Zelevinsky, Triple multiplicities for 𝑠𝑙(𝑟+1) and the spectrum of the exterior algebra of the adjoint representation, J. Algebraic Combin. 1 (1992), no. 1, 7–22. MR 1162639, https://doi.org/10.1023/A:1022429213282
- [Ca] Philippe Caldero, Toric degenerations of Schubert varieties, Transform. Groups 7 (2002), no. 1, 51–60. MR 1888475, https://doi.org/10.1007/s00031-002-0003-4
- [Ch] R. Chirivì, LS algebras and application to Schubert varieties, Transform. Groups 5 (2000), no. 3, 245–264. MR 1780934, https://doi.org/10.1007/BF01679715
- [CLO] David Cox, John Little, and Donal O’Shea, Ideals, varieties, and algorithms, 2nd ed., Undergraduate Texts in Mathematics, Springer-Verlag, New York, 1997. An introduction to computational algebraic geometry and commutative algebra. MR 1417938
- [DEP] Corrado De Concini, David Eisenbud, and Claudio Procesi, Hodge algebras, Astérisque, vol. 91, Société Mathématique de France, Paris, 1982. With a French summary. MR 680936
- [EHW] Thomas Enright, Roger Howe, and Nolan Wallach, A classification of unitary highest weight modules, Representation theory of reductive groups (Park City, Utah, 1982) Progr. Math., vol. 40, Birkhäuser Boston, Boston, MA, 1983, pp. 97–143. MR 733809
- [Ful] William Fulton, Young tableaux, London Mathematical Society Student Texts, vol. 35, Cambridge University Press, Cambridge, 1997. With applications to representation theory and geometry. MR 1464693
- [GL] N. Gonciulea and V. Lakshmibai, Degenerations of flag and Schubert varieties to toric varieties, Transform. Groups 1 (1996), no. 3, 215–248. MR 1417711, https://doi.org/10.1007/BF02549207
- [GW] Roe Goodman and Nolan R. Wallach, Representations and invariants of the classical groups, Encyclopedia of Mathematics and its Applications, vol. 68, Cambridge University Press, Cambridge, 1998. MR 1606831
- [Hd] W. V. D. Hodge, Some enumerative results in the theory of forms, Proc. Cambridge Philos. Soc. 39 (1943), 22–30. MR 7739, https://doi.org/10.1017/s0305004100017631
- [Ho83] Roger Howe, Reciprocity laws in the theory of dual pairs, Representation theory of reductive groups (Park City, Utah, 1982) Progr. Math., vol. 40, Birkhäuser Boston, Boston, MA, 1983, pp. 159–175. MR 733812
- [Ho89] Roger Howe, Remarks on classical invariant theory, Trans. Amer. Math. Soc. 313 (1989), no. 2, 539–570. MR 986027, https://doi.org/10.1090/S0002-9947-1989-0986027-X
- [Ho95] Roger Howe, Perspectives on invariant theory: Schur duality, multiplicity-free actions and beyond, The Schur lectures (1992) (Tel Aviv), Israel Math. Conf. Proc., vol. 8, Bar-Ilan Univ., Ramat Gan, 1995, pp. 1–182. MR 1321638
- [HTW1] R. Howe, E-C. Tan and J. Willenbring, Reciprocity Algebras and Branching for Classical Symmetric Pairs. arXiv:math.RT/0407467
- [HTW2] Roger Howe, Eng-Chye Tan, and Jeb F. Willenbring, Stable branching rules for classical symmetric pairs, Trans. Amer. Math. Soc. 357 (2005), no. 4, 1601–1626. MR 2115378, https://doi.org/10.1090/S0002-9947-04-03722-5
- [HTW3] Roger E. Howe, Eng-Chye Tan, and Jeb F. Willenbring, A basis for the 𝐺𝐿_{𝑛} tensor product algebra, Adv. Math. 196 (2005), no. 2, 531–564. MR 2166314, https://doi.org/10.1016/j.aim.2004.09.007
- [KM] Mikhail Kogan and Ezra Miller, Toric degeneration of Schubert varieties and Gelfand-Tsetlin polytopes, Adv. Math. 193 (2005), no. 1, 1–17. MR 2132758, https://doi.org/10.1016/j.aim.2004.03.017
- [Kud] Stephen S. Kudla, Seesaw dual reductive pairs, Automorphic forms of several variables (Katata, 1983) Progr. Math., vol. 46, Birkhäuser Boston, Boston, MA, 1984, pp. 244–268. MR 763017
- [KV] M. Kashiwara and M. Vergne, On the Segal-Shale-Weil representations and harmonic polynomials, Invent. Math. 44 (1978), no. 1, 1–47. MR 463359, https://doi.org/10.1007/BF01389900
- [L1] V. Lakshmibai, Geometry of 𝐺/𝑃. VI. Bases for fundamental representations of classical groups, J. Algebra 108 (1987), no. 2, 355–402. MR 892910, https://doi.org/10.1016/0021-8693(87)90108-6
- [L2] V. Lakshmibai, Geometry of 𝐺/𝑃. VI. Bases for fundamental representations of classical groups, J. Algebra 108 (1987), no. 2, 355–402. MR 892910, https://doi.org/10.1016/0021-8693(87)90108-6
- [L3] V. Lakshmibai, Geometry of 𝐺/𝑃. VI. Bases for fundamental representations of classical groups, J. Algebra 108 (1987), no. 2, 355–402. MR 892910, https://doi.org/10.1016/0021-8693(87)90108-6
- [L4] V. Lakshmibai, Standard monomial theory for ̂𝑆𝐿_{𝑛}, Operator algebras, unitary representations, enveloping algebras, and invariant theory (Paris, 1989) Progr. Math., vol. 92, Birkhäuser Boston, Boston, MA, 1990, pp. 197–217. MR 1103591, https://doi.org/10.1007/s101070100293
- [LLM] Venkatramani Lakshmibai, Peter Littelmann, and Peter Magyar, Standard monomial theory and applications, Representation theories and algebraic geometry (Montreal, PQ, 1997) NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 514, Kluwer Acad. Publ., Dordrecht, 1998, pp. 319–364. Notes by Rupert W. T. Yu. MR 1653037
- [LMS1] C. S. Seshadri, Geometry of 𝐺/𝑃. I. Theory of standard monomials for minuscule representations, C. P. Ramanujam—a tribute, Tata Inst. Fund. Res. Studies in Math., vol. 8, Springer, Berlin-New York, 1978, pp. 207–239. MR 541023
- [LMS2] C. S. Seshadri, Geometry of 𝐺/𝑃. I. Theory of standard monomials for minuscule representations, C. P. Ramanujam—a tribute, Tata Inst. Fund. Res. Studies in Math., vol. 8, Springer, Berlin-New York, 1978, pp. 207–239. MR 541023
- [LS] V. Lakshmibai and C. S. Seshadri, Standard monomial theory, Proceedings of the Hyderabad Conference on Algebraic Groups (Hyderabad, 1989) Manoj Prakashan, Madras, 1991, pp. 279–322. MR 1131317
- [Mac] I. G. Macdonald, Symmetric functions and Hall polynomials, The Clarendon Press, Oxford University Press, New York, 1979. Oxford Mathematical Monographs. MR 553598
- [RS] Lorenzo Robbiano and Moss Sweedler, Subalgebra bases, Commutative algebra (Salvador, 1988) Lecture Notes in Math., vol. 1430, Springer, Berlin, 1990, pp. 61–87. MR 1068324, https://doi.org/10.1007/BFb0085537
- [Stu] Bernd Sturmfels, Gröbner bases and convex polytopes, University Lecture Series, vol. 8, American Mathematical Society, Providence, RI, 1996. MR 1363949
- [Wey] Hermann Weyl, The classical groups, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ, 1997. Their invariants and representations; Fifteenth printing; Princeton Paperbacks. MR 1488158
- [Zhe] D. P. Zhelobenko, Kompaktnye gruppy Li i ikh predstavleniya, Izdat. “Nauka”, Moscow, 1970 (Russian). MR 0473097
Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 22E46
Retrieve articles in all journals with MSC (2000): 22E46
Additional Information
Roger Howe
Affiliation:
Department of Mathematics, Yale University New Haven, Connecticut 06520-8283
Email:
howe@math.yale.edu
Soo Teck Lee
Affiliation:
Department of Mathematics, National University of Singapore, 2 Science Drive 2, Singapore 117543
Email:
matleest@nus.edu.sg
DOI:
https://doi.org/10.1090/S0002-9947-07-04142-6
Received by editor(s):
April 8, 2005
Received by editor(s) in revised form:
August 22, 2005
Published electronically:
March 20, 2007
Article copyright:
© Copyright 2007
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.