Sigma function solution of the initial value problem for Somos 5 sequences
HTML articles powered by AMS MathViewer
- by A. N. W. Hone PDF
- Trans. Amer. Math. Soc. 359 (2007), 5019-5034 Request permission
Abstract:
The Somos 5 sequences are a family of sequences defined by a fifth order bilinear recurrence relation with constant coefficients. For particular choices of coefficients and initial data, integer sequences arise. By making the connection with a second order nonlinear mapping with a first integral, we prove that the two subsequences of odd/even index terms each satisfy a Somos 4 (fourth order) recurrence. This leads directly to the explicit solution of the initial value problem for the Somos 5 sequences in terms of the Weierstrass sigma function for an associated elliptic curve.References
- G. Bastien and M. Rogalski, On some algebraic difference equations $u_{n+2}u_n=\psi (u_{n+1})$ in $\Bbb R_*^+$, related to families of conics or cubics: generalization of the Lyness’ sequences, J. Math. Anal. Appl. 300 (2004), no. 2, 303–333. MR 2098211, DOI 10.1016/j.jmaa.2004.06.035
- Harry W. Braden, Victor Z. Enolskii, and Andrew N. W. Hone, Bilinear recurrences and addition formulae for hyperelliptic sigma functions, J. Nonlinear Math. Phys. 12 (2005), no. suppl. 2, 46–62. MR 2217095, DOI 10.2991/jnmp.2005.12.s2.5
- M. Bruschi, O. Ragnisco, P. M. Santini, and Gui Zhang Tu, Integrable symplectic maps, Phys. D 49 (1991), no. 3, 273–294. MR 1115864, DOI 10.1016/0167-2789(91)90149-4
- V. M. Bukhshtaber and Igor Moiseevich Krichever, Vector addition theorems and Baker-Akhiezer functions, Teoret. Mat. Fiz. 94 (1993), no. 2, 200–212 (Russian, with English and Russian summaries); English transl., Theoret. and Math. Phys. 94 (1993), no. 2, 142–149. MR 1221731, DOI 10.1007/BF01019326
- Ralph H. Buchholz and Randall L. Rathbun, An infinite set of Heron triangles with two rational medians, Amer. Math. Monthly 104 (1997), no. 2, 107–115. MR 1437411, DOI 10.2307/2974977
- V. M. Buchstaber, V. Z. Enolskiĭ, and D. V. Leĭkin, Hyperelliptic Kleinian functions and applications, Solitons, geometry, and topology: on the crossroad, Amer. Math. Soc. Transl. Ser. 2, vol. 179, Amer. Math. Soc., Providence, RI, 1997, pp. 1–33. MR 1437155, DOI 10.1090/trans2/179/01
- David G. Cantor, On the analogue of the division polynomials for hyperelliptic curves, J. Reine Angew. Math. 447 (1994), 91–145. MR 1263171, DOI 10.1515/crll.1994.447.91
- Manfred Einsiedler, Graham Everest, and Thomas Ward, Primes in elliptic divisibility sequences, LMS J. Comput. Math. 4 (2001), 1–13. MR 1815962, DOI 10.1112/S1461157000000772
- Graham Everest, Victor Miller, and Nelson Stephens, Primes generated by elliptic curves, Proc. Amer. Math. Soc. 132 (2004), no. 4, 955–963. MR 2045409, DOI 10.1090/S0002-9939-03-07311-8
- Graham Everest, Alf van der Poorten, Igor Shparlinski, and Thomas Ward, Recurrence sequences, Mathematical Surveys and Monographs, vol. 104, American Mathematical Society, Providence, RI, 2003. MR 1990179, DOI 10.1090/surv/104
- Sergey Fomin and Andrei Zelevinsky, The Laurent phenomenon, Adv. in Appl. Math. 28 (2002), no. 2, 119–144. MR 1888840, DOI 10.1006/aama.2001.0770
- D. Gale, The strange and surprising saga of the Somos sequences, Mathematical Intelligencer 13 (1) (1991), 40–42.
- A. N. W. Hone, Elliptic curves and quadratic recurrence sequences, Bull. London Math. Soc. 37 (2005), no. 2, 161–171. MR 2119015, DOI 10.1112/S0024609304004163
- Apostolos Iatrou and John A. G. Roberts, Integrable mappings of the plane preserving biquadratic invariant curves, J. Phys. A 34 (2001), no. 34, 6617–6636. MR 1873990, DOI 10.1088/0305-4470/34/34/308
- Apostolos Iatrou and John A. G. Roberts, Integrable mappings of the plane preserving biquadratic invariant curves. II, Nonlinearity 15 (2002), no. 2, 459–489. MR 1888861, DOI 10.1088/0951-7715/15/2/313
- Danesh Jogia, John A. G. Roberts, and Franco Vivaldi, An algebraic geometric approach to integrable maps of the plane, J. Phys. A 39 (2006), no. 5, 1133–1149. MR 2200430, DOI 10.1088/0305-4470/39/5/008
- Shigeki Matsutani, Recursion relation of hyperelliptic psi-functions of genus two, Integral Transforms Spec. Funct. 14 (2003), no. 6, 517–527. MR 2017658, DOI 10.1080/10652460310001600609
- Rick Miranda, Algebraic curves and Riemann surfaces, Graduate Studies in Mathematics, vol. 5, American Mathematical Society, Providence, RI, 1995. MR 1326604, DOI 10.1090/gsm/005
- Alfred J. van der Poorten, Elliptic curves and continued fractions, J. Integer Seq. 8 (2005), no. 2, Article 05.2.5, 19. MR 2152285
- Alfred J. van der Poorten and Christine S. Swart, Recurrence relations for elliptic sequences: every Somos 4 is a Somos $k$, Bull. London Math. Soc. 38 (2006), no. 4, 546–554. MR 2250745, DOI 10.1112/S0024609306018534
- A.J. van der Poorten, Curves of genus $2$, continued fractions and Somos Sequences, J. Integer Seq. 8 (2005), Article 05.3.4.
- J. Propp, The “bilinear” forum, and The Somos Sequence Site, //www.math.wisc.edu/~propp/
- G. R. W. Quispel, J. A. G. Roberts, and C. J. Thompson, Integrable mappings and soliton equations. II, Phys. D 34 (1989), no. 1-2, 183–192. MR 982386, DOI 10.1016/0167-2789(89)90233-9
- Raphael M. Robinson, Periodicity of Somos sequences, Proc. Amer. Math. Soc. 116 (1992), no. 3, 613–619. MR 1140672, DOI 10.1090/S0002-9939-1992-1140672-5
- R. Shipsey, Elliptic divisibility sequences, Ph.D. thesis, University of London (2000).
- Joseph H. Silverman, The arithmetic of elliptic curves, Graduate Texts in Mathematics, vol. 106, Springer-Verlag, New York, 1986. MR 817210, DOI 10.1007/978-1-4757-1920-8
- Joseph H. Silverman, $p$-adic properties of division polynomials and elliptic divisibility sequences, Math. Ann. 332 (2005), no. 2, 443–471. MR 2178070, DOI 10.1007/s00208-004-0608-0
- N.J.A. Sloane, On-Line Encyclopedia of Integer Sequences, http://www.research.att.com/~njas/sequences, sequence A006721.
- C.S. Swart, Elliptic curves and related sequences, Ph.D. thesis, University of London (2003).
- Teruhisa Tsuda, Integrable mappings via rational elliptic surfaces, J. Phys. A 37 (2004), no. 7, 2721–2730. MR 2047557, DOI 10.1088/0305-4470/37/7/014
- A. P. Veselov, Integrable mappings, Uspekhi Mat. Nauk 46 (1991), no. 5(281), 3–45, 190 (Russian); English transl., Russian Math. Surveys 46 (1991), no. 5, 1–51. MR 1160332, DOI 10.1070/RM1991v046n05ABEH002856
- A. P. Veselov, What is an integrable mapping?, What is integrability?, Springer Ser. Nonlinear Dynam., Springer, Berlin, 1991, pp. 251–272. MR 1098340, DOI 10.1007/978-3-642-88703-1_{6}
- Morgan Ward, Memoir on elliptic divisibility sequences, Amer. J. Math. 70 (1948), 31–74. MR 23275, DOI 10.2307/2371930
- Morgan Ward, The law of repetition of primes in an elliptic divisibility sequence, Duke Math. J. 15 (1948), 941–946. MR 27286
- E.T. Whittaker and G.N. Watson, A Course of Modern Analysis, 4th edition, Cambridge, 1965.
- D. Zagier, ‘Problems posed at the St. Andrews Colloquium, 1996,’ Solutions, 5th day; available at http://www-groups.dcs.st-and.ac.uk/~john/Zagier/Problems.html
Additional Information
- A. N. W. Hone
- Affiliation: Institute of Mathematics, Statistics and Actuarial Science, University of Kent, Canterbury CT2 7NF, United Kingdom
- Email: anwh@kent.ac.uk
- Received by editor(s): February 9, 2005
- Received by editor(s) in revised form: September 15, 2005
- Published electronically: April 24, 2007
- © Copyright 2007 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 359 (2007), 5019-5034
- MSC (2000): Primary 11B37, 33E05; Secondary 37J35
- DOI: https://doi.org/10.1090/S0002-9947-07-04215-8
- MathSciNet review: 2320658