Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Stabilization of oscillators subject to dry friction: Finite time convergence versus exponential decay results

Author: Alexandre Cabot
Journal: Trans. Amer. Math. Soc. 360 (2008), 103-121
MSC (2000): Primary 34C15, 34A60; Secondary 70F40, 37N05
Published electronically: July 20, 2007
MathSciNet review: 2341995
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We investigate the dynamics of an oscillator subject to dry friction via the following differential inclusion:

$\displaystyle (\textit{S})\qquad\qquad \ddot{x}(t) + \,\partial \Phi(\dot{x}(t)) + \, \nabla f(x(t)) \ni 0, \qquad t\geq 0, $

where $ f:\mathbb{R}^n \to \mathbb{R}$ is a smooth potential and $ \Phi:\mathbb{R}^n\to \mathbb{R}$ is a convex function. The friction is modelized by the subdifferential term $ -\partial \Phi(\dot{x})$. When $ 0\in \operatorname{int}(\partial \Phi(0))$ (dry friction condition), it was shown by Adly, Attouch, and Cabot (2006) that the unique solution to $ (S)$ converges in a finite time toward an equilibrium state $ x_{\infty}$ provided that $ -\nabla f(x_{\infty})\in \operatorname{int}(\partial \Phi(0))$. In this paper, we study the delicate case where the vector $ -\nabla f(x_{\infty})$ belongs to the boundary of the set $ \partial \Phi(0)$. We prove that either the solution converges in a finite time or the speed of convergence is exponential. When $ \Phi=a\,\vert\,.\,\vert+\, b\, \vert\,.\,\vert^2/2$, $ a>0$, $ b\geq 0$, we obtain the existence of a critical coefficient $ b_c>0$ below which every solution stabilizes in a finite time. It is also shown that the geometry of the set $ \partial \Phi(0)$ plays a central role in the analysis.

References [Enhancements On Off] (What's this?)

  • 1. Samir Adly, Hedy Attouch, and Alexandre Cabot, Finite time stabilization of nonlinear oscillators subject to dry friction, Nonsmooth mechanics and analysis, Adv. Mech. Math., vol. 12, Springer, New York, 2006, pp. 289–304. MR 2205459,
  • 2. Samir Adly and Daniel Goeleven, A stability theory for second-order nonsmooth dynamical systems with application to friction problems, J. Math. Pures Appl. (9) 83 (2004), no. 1, 17–51 (English, with English and French summaries). MR 2023053,
  • 3. H. Amann and J. I. Diaz, A note on the dynamics of an oscillator in the presence of strong friction, Nonlinear Anal. 55 (2003), no. 3, 209–216. MR 2007469,
  • 4. H. Attouch, X. Goudou, and P. Redont, The heavy ball with friction method. I. The continuous dynamical system: global exploration of the local minima of a real-valued function by asymptotic analysis of a dissipative dynamical system, Commun. Contemp. Math. 2 (2000), no. 1, 1–34. MR 1753136,
  • 5. A. Bamberger and H. Cabannes, Mouvement d'une corde vibrante soumise à un frottement solide, C. R. Acad. Sci. Paris Sér. I Math. 292 (1981), 699-702.MR 0618890 (82h:73051)
  • 6. H. Brézis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, 1973 (French). North-Holland Mathematics Studies, No. 5. Notas de Matemática (50). MR 0348562
  • 7. B. Brogliato, Nonsmooth Mechanics, Springer CCES, 2nd edition, London (1999).
  • 8. H. Cabannes, Mouvement d'une corde vibrante soumise à un frottement solide, C. R. Acad. Sci. Paris Sér. A-B 287 (1978), 671-673. MR 0514553 (83m:73056)
  • 9. H. Cabannes, Study of motions of a vibrating string subject to solid friction, Math. Methods Appl. Sci. 3 (1981), 287-300. MR 0657297 (83e:73049)
  • 10. J. I. Díaz and A. Liñán, On the asymptotic behavior for a damped oscillator under a sublinear friction, RACSAM. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 95 (2001), no. 1, 155–160 (English, with English and Spanish summaries). MR 1899359
  • 11. J. I. Díaz and V. Millot, Coulomb friction and oscillation: stabilization in finite time for a system of damped oscillators, XVIII CEDYA: Congress on Differential Equations and Applications/VIII CMA: Congress on Applied Mathematics (Tarragona, 2003).
  • 12. D. Goeleven, D. Motreanu, Y. Dumont, and M. Rochdi, Variational and hemivariational inequalities: theory, methods and applications. Vol. I, Nonconvex Optimization and its Applications, vol. 69, Kluwer Academic Publishers, Boston, MA, 2003. Unilateral analysis and unilateral mechanics. MR 2006373
  • 13. D.W. Jordan and P. Smith, Nonlinear ordinary differential equations, Second Edition, Oxford Applied Mathematics and Computing Science Series, The Clarendon Press, Oxford University Press, New York (1987). MR 0899734 (89a:34001)
  • 14. Manuel D. P. Monteiro Marques, Differential inclusions in nonsmooth mechanical problems, Progress in Nonlinear Differential Equations and their Applications, vol. 9, Birkhäuser Verlag, Basel, 1993. Shocks and dry friction. MR 1231975
  • 15. J.J. Moreau, Dynamique de systèmes à liaisons unilatérales avec frottement sec éventuel: essais numériques, LMGC, Montpellier, Note Technique n$ ^o$ 85-1 (1985).
  • 16. J.J. Moreau, Une formulation du contact à frottement sec; application au calcul numérique, C. R. Acad. Sci. Paris Sér. II 302 (1986), 799-801.MR 0977371 (89k:73008)
  • 17. P.D. Panagiotopoulos, Inequality problems in Mechanics and Applications, Birkhaüser, Boston (1985).MR 0896909 (88h:49003)
  • 18. Y. Renard, Modélisation des Instabilités liées au Frottement sec des Solides Elastiques, Aspect Théorique, Ph.D. Thesis, Grenoble I University (1998).
  • 19. R. Tyrrell Rockafellar and Roger J.-B. Wets, Variational analysis, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 317, Springer-Verlag, Berlin, 1998. MR 1491362

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 34C15, 34A60, 70F40, 37N05

Retrieve articles in all journals with MSC (2000): 34C15, 34A60, 70F40, 37N05

Additional Information

Alexandre Cabot
Affiliation: Université de Limoges, 123 avenue Albert Thomas, 87060 Limoges Cedex, France

Keywords: Differential inclusion, dry friction, nonlinear oscillator, finite time convergence, exponential decay, convex analysis
Received by editor(s): December 15, 2004
Received by editor(s) in revised form: August 6, 2005
Published electronically: July 20, 2007
Article copyright: © Copyright 2007 American Mathematical Society