Generalized $\beta$-expansions, substitution tilings, and local finiteness
HTML articles powered by AMS MathViewer
- by Natalie Priebe Frank and E. Arthur Robinson Jr. PDF
- Trans. Amer. Math. Soc. 360 (2008), 1163-1177 Request permission
Abstract:
For a fairly general class of two-dimensional tiling substitutions, we prove that if the length expansion $\beta$ is a Pisot number, then the tilings defined by the substitution must be locally finite. We also give a simple example of a two-dimensional substitution on rectangular tiles, with a non-Pisot length expansion $\beta$, such that no tiling admitted by the substitution is locally finite. The proofs of both results are effectively one-dimensional and involve the idea of a certain type of generalized $\beta$-transformation.References
- L. Danzer, Inflation species of planar tilings which are not of locally finite complexity, Tr. Mat. Inst. Steklova 239 (2002), no. Diskret. Geom. i Geom. Chisel, 118–126; English transl., Proc. Steklov Inst. Math. 4(239) (2002), 108–116. MR 1975139
- N. P. Frank, Non-constant length ${\mathbb {Z}}^d$ substitutions, in preparation.
- D. Frettlöh, Nichtperiodische Pflasterungen mit ganzzahligem Inflationsfaktor, Ph.D. dissertation, University of Dortmund, 2002.
- Richard Kenyon, Rigidity of planar tilings, Invent. Math. 107 (1992), no. 3, 637–651. MR 1150605, DOI 10.1007/BF01231905
- A. Rényi, Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hungar. 8 (1957), 477–493. MR 97374, DOI 10.1007/BF02020331
- E. Arthur Robinson Jr., Symbolic dynamics and tilings of $\Bbb R^d$, Symbolic dynamics and its applications, Proc. Sympos. Appl. Math., vol. 60, Amer. Math. Soc., Providence, RI, 2004, pp. 81–119. MR 2078847, DOI 10.1090/psapm/060/2078847
- L. Sadun, Some generalizations of the pinwheel tiling, Discrete Comput. Geom. 20 (1998), no. 1, 79–110. MR 1626703, DOI 10.1007/PL00009379
- Klaus Schmidt, On periodic expansions of Pisot numbers and Salem numbers, Bull. London Math. Soc. 12 (1980), no. 4, 269–278. MR 576976, DOI 10.1112/blms/12.4.269
- Boris Solomyak, Dynamics of self-similar tilings, Ergodic Theory Dynam. Systems 17 (1997), no. 3, 695–738. MR 1452190, DOI 10.1017/S0143385797084988
- W. Thurston, Groups, Tilings, and Finite State Automata, AMS Colloquium Lecture Notes, American Mathematical Society, Boulder, 1989.
- Keith M. Wilkinson, Ergodic properties of a class of piecewise linear transformations, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 31 (1974/75), 303–328. MR 374390, DOI 10.1007/BF00532869
Additional Information
- Natalie Priebe Frank
- Affiliation: Department of Mathematics, Vassar College, Box 248, Poughkeepsie, New York 12604
- Email: nafrank@vassar.edu
- E. Arthur Robinson Jr.
- Affiliation: Department of Mathematics, George Washington University, Washington, DC 20052
- Email: robinson@gwu.edu
- Received by editor(s): June 6, 2005
- Published electronically: October 23, 2007
- © Copyright 2007
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 360 (2008), 1163-1177
- MSC (2000): Primary 52C20; Secondary 37B50
- DOI: https://doi.org/10.1090/S0002-9947-07-04527-8
- MathSciNet review: 2357692