Semilinear hypoelliptic differential operators with multiple characteristics
HTML articles powered by AMS MathViewer
- by Nguyen Minh Tri PDF
- Trans. Amer. Math. Soc. 360 (2008), 3875-3907 Request permission
Abstract:
In this paper we consider the regularity of solutions of semilinear differential equations principal parts of which consist of linear polynomial operators constructed from real vector fields. Based on the study of fine properties of the principal linear parts we then obtain the regularity of solutions of the nonlinear equations. Some results obtained in this article are also new in the frame of linear theory.References
- S. Bernstein, Sur la nature analytique des solutions des équations aux dérivées partielles du second ordre, Math. Ann. 59 (1904), no. 1-2, 20–76 (French). MR 1511259, DOI 10.1007/BF01444746
- Avron Douglis and Louis Nirenberg, Interior estimates for elliptic systems of partial differential equations, Comm. Pure Appl. Math. 8 (1955), 503–538. MR 75417, DOI 10.1002/cpa.3160080406
- Yu. V. Egorov, Lineĭnye differentsial′nye uravneniya glavnogo tipa, “Nauka”, Moscow, 1984 (Russian). MR 776969
- Yu. V. Egorov and Nguen Min′Chi, Maximally hypoelliptic operators with a noninvolutive characteristic set, Dokl. Akad. Nauk SSSR 314 (1990), no. 5, 1059–1061 (Russian); English transl., Soviet Math. Dokl. 42 (1991), no. 2, 585–587. MR 1116867
- Yu. V. Egorov and Nguen Min′Chi, On a class of maximally hypoelliptic operators, Trudy Sem. Petrovsk. 17 (1994), 3–26, 267 (Russian, with English and Russian summaries). The English translation has been reviewed [J. Math. Sci. 75 (1995), no. 3, 1615–1630; MR1339197 (96d:35023)]. MR 1373419
- G. B. Folland, Applications of analysis on nilpotent groups to partial differential equations, Bull. Amer. Math. Soc. 83 (1977), no. 5, 912–930. MR 457928, DOI 10.1090/S0002-9904-1977-14326-7
- Avner Friedman, On classes of solutions of elliptic linear partial differential equations, Proc. Amer. Math. Soc. 8 (1957), 418–427. MR 96894, DOI 10.1090/S0002-9939-1957-0096894-7
- Bernard Helffer and Jean Nourrigat, Hypoellipticité maximale pour des opérateurs polynômes de champs de vecteurs, Progress in Mathematics, vol. 58, Birkhäuser Boston, Inc., Boston, MA, 1985 (French). MR 897103
- Lars Hörmander, The analysis of linear partial differential operators. III, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 274, Springer-Verlag, Berlin, 1985. Pseudodifferential operators. MR 781536
- Lars Hörmander, Hypoelliptic second order differential equations, Acta Math. 119 (1967), 147–171. MR 222474, DOI 10.1007/BF02392081
- J. J. Kohn, Pseudo-differential operators and hypoellipticity, Partial differential equations (Proc. Sympos. Pure Math., Vol. XXIII, Univ. California, Berkeley, Calif., 1971) Amer. Math. Soc., Providence, R.I., 1973, pp. 61–69. MR 0338592
- J. J. Kohn, Hypoellipticity and loss of derivatives, Ann. of Math. (2) 162 (2005), no. 2, 943–986. With an appendix by Makhlouf Derridj and David S. Tartakoff. MR 2183286, DOI 10.4007/annals.2005.162.943
- Carlo Miranda, Partial differential equations of elliptic type, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 2, Springer-Verlag, New York-Berlin, 1970. Second revised edition. Translated from the Italian by Zane C. Motteler. MR 0284700
- I. G. Petrovskii, Sur l’analyticite des solutions des systèmes d’équations différentielles, Matem. Sbornik (N. S.), 5(47) (1939), 3-70.
- Linda Preiss Rothschild and E. M. Stein, Hypoelliptic differential operators and nilpotent groups, Acta Math. 137 (1976), no. 3-4, 247–320. MR 436223, DOI 10.1007/BF02392419
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
- Michael E. Taylor, Pseudodifferential operators, Princeton Mathematical Series, No. 34, Princeton University Press, Princeton, N.J., 1981. MR 618463
- François Trèves, Introduction to pseudodifferential and Fourier integral operators. Vol. 2, University Series in Mathematics, Plenum Press, New York-London, 1980. Fourier integral operators. MR 597145
- V. T. T. Hien, N. M. Tri, Analyticity of solutions of semi-linear equations with double characteristics, J. Math. Anal. Appl., 337 (2008), 1249–1260.
- Chao Jiang Xu, Regularity for quasilinear second-order subelliptic equations, Comm. Pure Appl. Math. 45 (1992), no. 1, 77–96. MR 1135924, DOI 10.1002/cpa.3160450104
Additional Information
- Nguyen Minh Tri
- Affiliation: Institute of Mathematics, 18 Hoang Quoc Viet Road, Cau Giay District, 10307 Hanoi, Vietnam
- Address at time of publication: Department of Mathematics, University of Chicago, 5734 S. University Avenue, Chicago, Illinois 60637
- Email: triminh@math.ac.vn
- Received by editor(s): August 15, 2006
- Published electronically: February 13, 2008
- © Copyright 2008 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 360 (2008), 3875-3907
- MSC (2000): Primary 35H10; Secondary 35A08, 35B45, 35B65
- DOI: https://doi.org/10.1090/S0002-9947-08-04443-7
- MathSciNet review: 2386250