Finiteness of Hilbert functions and bounds for Castelnuovo-Mumford regularity of initial ideals
HTML articles powered by AMS MathViewer
- by Lê Tuân Hoa PDF
- Trans. Amer. Math. Soc. 360 (2008), 4519-4540 Request permission
Abstract:
Bounds for the Castelnuovo-Mumford regularity and Hilbert coefficients are given in terms of the arithmetic degree (if the ring is reduced) or in terms of the defining degrees. From this it follows that there exists only a finite number of Hilbert functions associated with reduced algebras over an algebraically closed field with a given arithmetic degree and dimension. A good bound is also given for the Castelnuovo-Mumford regularity of initial ideals which depends neither on term orders nor on the coordinates and holds for any field.References
- Dave Bayer and David Mumford, What can be computed in algebraic geometry?, Computational algebraic geometry and commutative algebra (Cortona, 1991) Sympos. Math., XXXIV, Cambridge Univ. Press, Cambridge, 1993, pp. 1–48. MR 1253986
- David Bayer and Michael Stillman, A criterion for detecting $m$-regularity, Invent. Math. 87 (1987), no. 1, 1–11. MR 862710, DOI 10.1007/BF01389151
- Aaron Bertram, Lawrence Ein, and Robert Lazarsfeld, Vanishing theorems, a theorem of Severi, and the equations defining projective varieties, J. Amer. Math. Soc. 4 (1991), no. 3, 587–602. MR 1092845, DOI 10.1090/S0894-0347-1991-1092845-5
- Cristina Blancafort, Hilbert functions of graded algebras over Artinian rings, J. Pure Appl. Algebra 125 (1998), no. 1-3, 55–78. MR 1600008, DOI 10.1016/S0022-4049(96)00124-7
- M. Brodmann and A. F. Lashgari, A diagonal bound for cohomological postulation numbers of projective schemes, J. Algebra 265 (2003), no. 2, 631–650. MR 1987021, DOI 10.1016/S0021-8693(03)00234-5
- M. P. Brodmann and R. Y. Sharp, Local cohomology: an algebraic introduction with geometric applications, Cambridge Studies in Advanced Mathematics, vol. 60, Cambridge University Press, Cambridge, 1998. MR 1613627, DOI 10.1017/CBO9780511629204
- Giulio Caviglia and Enrico Sbarra, Characteristic-free bounds for the Castelnuovo-Mumford regularity, Compos. Math. 141 (2005), no. 6, 1365–1373. MR 2188440, DOI 10.1112/S0010437X05001600
- Marc Chardin and Amadou Lamine Fall, Sur la régularité de Castelnuovo-Mumford des idéaux, en dimension 2, C. R. Math. Acad. Sci. Paris 341 (2005), no. 4, 233–238 (French, with English and French summaries). MR 2164678, DOI 10.1016/j.crma.2005.06.020
- Marc Chardin and Guillermo Moreno-Socías, Regularity of lex-segment ideals: some closed formulas and applications, Proc. Amer. Math. Soc. 131 (2003), no. 4, 1093–1102. MR 1948099, DOI 10.1090/S0002-9939-02-06647-9
- David Eisenbud, Commutative algebra, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995. With a view toward algebraic geometry. MR 1322960, DOI 10.1007/978-1-4612-5350-1
- David Eisenbud and Shiro Goto, Linear free resolutions and minimal multiplicity, J. Algebra 88 (1984), no. 1, 89–133. MR 741934, DOI 10.1016/0021-8693(84)90092-9
- H. Flenner, L. O’Carroll, and W. Vogel, Joins and intersections, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1999. MR 1724388, DOI 10.1007/978-3-662-03817-8
- M. Giusti, Some effectivity problems in polynomial ideal theory, EUROSAM 84 (Cambridge, 1984) Lecture Notes in Comput. Sci., vol. 174, Springer, Berlin, 1984, pp. 159–171. MR 779123, DOI 10.1007/BFb0032839
- L. Gruson, R. Lazarsfeld, and C. Peskine, On a theorem of Castelnuovo, and the equations defining space curves, Invent. Math. 72 (1983), no. 3, 491–506. MR 704401, DOI 10.1007/BF01398398
- Jürgen Herzog, Dorin Popescu, and Marius Vladoiu, On the Ext-modules of ideals of Borel type, Commutative algebra (Grenoble/Lyon, 2001) Contemp. Math., vol. 331, Amer. Math. Soc., Providence, RI, 2003, pp. 171–186. MR 2013165, DOI 10.1090/conm/331/05909
- Lê Tuân Hoa and Eero Hyry, Castelnuovo-Mumford regularity of initial ideals, J. Symbolic Comput. 38 (2004), no. 5, 1327–1341. MR 2168718, DOI 10.1016/j.jsc.2004.04.001
- Le Tuan Hoa, Jürgen Stückrad, and Wolfgang Vogel, Towards a structure theory for projective varieties of $\textrm {degree}=\textrm {codimension}+2$, J. Pure Appl. Algebra 71 (1991), no. 2-3, 203–231. MR 1117635, DOI 10.1016/0022-4049(91)90148-U
- Lê Tuân Hoa and Ngô Viêt Trung, On the Castelnuovo-Mumford regularity and the arithmetic degree of monomial ideals, Math. Z. 229 (1998), no. 3, 519–537. MR 1658557, DOI 10.1007/PL00004668
- Théorie des intersections et théorème de Riemann-Roch, Lecture Notes in Mathematics, Vol. 225, Springer-Verlag, Berlin-New York, 1971 (French). Séminaire de Géométrie Algébrique du Bois-Marie 1966–1967 (SGA 6); Dirigé par P. Berthelot, A. Grothendieck et L. Illusie. Avec la collaboration de D. Ferrand, J. P. Jouanolou, O. Jussila, S. Kleiman, M. Raynaud et J. P. Serre. MR 0354655
- Chikashi Miyazaki, Wolfgang Vogel, and Kohji Yanagawa, Associated primes and arithmetic degrees, J. Algebra 192 (1997), no. 1, 166–182. MR 1449956, DOI 10.1006/jabr.1996.6952
- H. Michael Möller and Ferdinando Mora, Upper and lower bounds for the degree of Groebner bases, EUROSAM 84 (Cambridge, 1984) Lecture Notes in Comput. Sci., vol. 174, Springer, Berlin, 1984, pp. 172–183. MR 779124, DOI 10.1007/BFb0032840
- David Mumford, Lectures on curves on an algebraic surface, Annals of Mathematics Studies, No. 59, Princeton University Press, Princeton, N.J., 1966. With a section by G. M. Bergman. MR 0209285
- Maria Evelina Rossi, Ngô Viêt Trung, and Giuseppe Valla, Castelnuovo-Mumford regularity and extended degree, Trans. Amer. Math. Soc. 355 (2003), no. 5, 1773–1786. MR 1953524, DOI 10.1090/S0002-9947-03-03185-4
- Maria Evelina Rossi, Ngô Viêt Trung, and Giuseppe Valla, Castelnuovo-Mumford regularity and finiteness of Hilbert functions, Commutative algebra, Lect. Notes Pure Appl. Math., vol. 244, Chapman & Hall/CRC, Boca Raton, FL, 2006, pp. 193–209. MR 2184798, DOI 10.1201/9781420028324.ch14
- M. E. Rossi, G. Valla, and W. V. Vasconcelos, Maximal Hilbert functions, Results Math. 39 (2001), no. 1-2, 99–114. MR 1817403, DOI 10.1007/BF03322678
- Enrico Sbarra, Upper bounds for local cohomology for rings with given Hilbert function, Comm. Algebra 29 (2001), no. 12, 5383–5409. MR 1872238, DOI 10.1081/AGB-100107934
- Rickard Sjögren, On the regularity of graded $k$-algebras of Krull dimension $\leq 1$, Math. Scand. 71 (1992), no. 2, 167–172. MR 1212701, DOI 10.7146/math.scand.a-12419
- Wolmer V. Vasconcelos, Computational methods in commutative algebra and algebraic geometry, Algorithms and Computation in Mathematics, vol. 2, Springer-Verlag, Berlin, 1998. With chapters by David Eisenbud, Daniel R. Grayson, Jürgen Herzog and Michael Stillman. MR 1484973, DOI 10.1007/978-3-642-58951-5
Additional Information
- Lê Tuân Hoa
- Affiliation: Institute of Mathematics, 18 Hoang Quoc Viet Road, 10307 Hanoi, Vietnam
- Email: lthoa@math.ac.vn
- Received by editor(s): July 13, 2005
- Published electronically: April 4, 2008
- Additional Notes: The author was supported in part by the National Basic Research Program (Vietnam). The final preparation of the article was done during his stay at the Centre de Recerca Matematica (Spain).
- © Copyright 2008
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 360 (2008), 4519-4540
- MSC (2000): Primary 13D45, 13D40, 13P10
- DOI: https://doi.org/10.1090/S0002-9947-08-04424-3
- MathSciNet review: 2403695
Dedicated: Dedicated to Professor J. Herzog on the occasion of his 65th birthday