Twisted Alexander norms give lower bounds on the Thurston norm
HTML articles powered by AMS MathViewer
- by Stefan Friedl and Taehee Kim PDF
- Trans. Amer. Math. Soc. 360 (2008), 4597-4618 Request permission
Abstract:
We introduce twisted Alexander norms of a compact connected orientable 3-manifold with first Betti number greater than one, generalizing norms of McMullen and Turaev. We show that twisted Alexander norms give lower bounds on the Thurston norm of a 3-manifold. Using these we completely determine the Thurston norm of many 3-manifolds which are not determined by norms of McMullen and Turaev.References
- Robert Bieri, Walter D. Neumann, and Ralph Strebel, A geometric invariant of discrete groups, Invent. Math. 90 (1987), no. 3, 451–477. MR 914846, DOI 10.1007/BF01389175
- Tim D. Cochran, Noncommutative knot theory, Algebr. Geom. Topol. 4 (2004), 347–398. MR 2077670, DOI 10.2140/agt.2004.4.347
- Richard H. Crowell and Ralph H. Fox, Introduction to knot theory, Graduate Texts in Mathematics, No. 57, Springer-Verlag, New York-Heidelberg, 1977. Reprint of the 1963 original. MR 0445489
- Nathan M. Dunfield, Alexander and Thurston norms of fibered 3-manifolds, Pacific J. Math. 200 (2001), no. 1, 43–58. MR 1863406, DOI 10.2140/pjm.2001.200.43
- Ralph H. Fox, Free differential calculus. I. Derivation in the free group ring, Ann. of Math. (2) 57 (1953), 547–560. MR 53938, DOI 10.2307/1969736
- Ralph H. Fox, Free differential calculus. II. The isomorphism problem of groups, Ann. of Math. (2) 59 (1954), 196–210. MR 62125, DOI 10.2307/1969686
- S. Friedl, KnotTwister, http://math.rice.edu/ ̃friedl/index.html (2005).
- Stefan Friedl and Taehee Kim, The Thurston norm, fibered manifolds and twisted Alexander polynomials, Topology 45 (2006), no. 6, 929–953. MR 2263219, DOI 10.1016/j.top.2006.06.003
- S. Friedl and S. Harvey, Non–commutative multivariable Reidemeister torsion and the Thurston norm, preprint (2006), arXiv:math. GT/0608409.
- David Gabai, Foliations and the topology of $3$-manifolds, J. Differential Geom. 18 (1983), no. 3, 445–503. MR 723813
- Shelly L. Harvey, Higher-order polynomial invariants of 3-manifolds giving lower bounds for the Thurston norm, Topology 44 (2005), no. 5, 895–945. MR 2153977, DOI 10.1016/j.top.2005.03.001
- Jonathan Hillman, Algebraic invariants of links, Series on Knots and Everything, vol. 32, World Scientific Publishing Co., Inc., River Edge, NJ, 2002. MR 1932169, DOI 10.1142/9789812776648
- Paul Kirk and Charles Livingston, Twisted Alexander invariants, Reidemeister torsion, and Casson-Gordon invariants, Topology 38 (1999), no. 3, 635–661. MR 1670420, DOI 10.1016/S0040-9383(98)00039-1
- Teruaki Kitano, Twisted Alexander polynomial and Reidemeister torsion, Pacific J. Math. 174 (1996), no. 2, 431–442. MR 1405595
- P. B. Kronheimer, Embedded surfaces and gauge theory in three and four dimensions, Surveys in differential geometry, Vol. III (Cambridge, MA, 1996) Int. Press, Boston, MA, 1998, pp. 243–298. MR 1677890
- P. B. Kronheimer, Minimal genus in $S^1\times M^3$, Invent. Math. 135 (1999), no. 1, 45–61. MR 1664695, DOI 10.1007/s002220050279
- P. B. Kronheimer and T. S. Mrowka, Scalar curvature and the Thurston norm, Math. Res. Lett. 4 (1997), no. 6, 931–937. MR 1492131, DOI 10.4310/MRL.1997.v4.n6.a12
- J. Levine, A method for generating link polynomials, Amer. J. Math. 89 (1967), 69–84. MR 224082, DOI 10.2307/2373097
- Xiao Song Lin, Representations of knot groups and twisted Alexander polynomials, Acta Math. Sin. (Engl. Ser.) 17 (2001), no. 3, 361–380. MR 1852950, DOI 10.1007/s101140100122
- Curtis T. McMullen, The Alexander polynomial of a 3-manifold and the Thurston norm on cohomology, Ann. Sci. École Norm. Sup. (4) 35 (2002), no. 2, 153–171 (English, with English and French summaries). MR 1914929, DOI 10.1016/S0012-9593(02)01086-8
- Ulrich Oertel, Homology branched surfaces: Thurston’s norm on $H_2(M^3)$, Low-dimensional topology and Kleinian groups (Coventry/Durham, 1984) London Math. Soc. Lecture Note Ser., vol. 112, Cambridge Univ. Press, Cambridge, 1986, pp. 253–272. MR 903869
- Peter Ozsváth and Zoltán Szabó, Holomorphic disks and genus bounds, Geom. Topol. 8 (2004), 311–334. MR 2023281, DOI 10.2140/gt.2004.8.311
- William P. Thurston, A norm for the homology of $3$-manifolds, Mem. Amer. Math. Soc. 59 (1986), no. 339, i–vi and 99–130. MR 823443
- Vladimir Turaev, Introduction to combinatorial torsions, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2001. Notes taken by Felix Schlenk. MR 1809561, DOI 10.1007/978-3-0348-8321-4
- Vladimir Turaev, Torsions of $3$-dimensional manifolds, Progress in Mathematics, vol. 208, Birkhäuser Verlag, Basel, 2002. MR 1958479, DOI 10.1007/978-3-0348-7999-6
- V. Turaev, A homological estimate for the Thurston norm, preprint (2002), arXiv:math. GT/0207267
- S. Vidussi, The Alexander norm is smaller than the Thurston norm; a Seiberg–Witten proof, Prepublication Ecole Polytechnique 6 (1999).
- Stefano Vidussi, Norms on the cohomology of a 3-manifold and SW theory, Pacific J. Math. 208 (2003), no. 1, 169–186. MR 1979378, DOI 10.2140/pjm.2003.208.169
- Masaaki Wada, Twisted Alexander polynomial for finitely presentable groups, Topology 33 (1994), no. 2, 241–256. MR 1273784, DOI 10.1016/0040-9383(94)90013-2
Additional Information
- Stefan Friedl
- Affiliation: Département de Mathématiques, Université du Québec à Montréal, Montréal, Québec, Canada – and – Department of Mathematics, University of Warwick, Coventry, United Kingdom
- MR Author ID: 746949
- Email: sfriedl@gmail.com
- Taehee Kim
- Affiliation: Department of Mathematics, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea
- MR Author ID: 743933
- Email: tkim@konkuk.ac.kr
- Received by editor(s): June 1, 2005
- Received by editor(s) in revised form: March 20, 2006
- Published electronically: April 24, 2008
- Additional Notes: The second author is the corresponding author for this paper
- © Copyright 2008 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 360 (2008), 4597-4618
- MSC (2000): Primary 57M27; Secondary 57N10
- DOI: https://doi.org/10.1090/S0002-9947-08-04455-3
- MathSciNet review: 2403698