## On $p$-permutation equivalences: Between Rickard equivalences and isotypies

HTML articles powered by AMS MathViewer

- by Robert Boltje and Bangteng Xu PDF
- Trans. Amer. Math. Soc.
**360**(2008), 5067-5087 Request permission

## Abstract:

BrouĂ© and Rickard defined in their landmark papers from 1990 and 1996 the notions of an isotypy and a splendid equivalence between $p$-blocks of finite groups. Here, we define a notion of equivalence, which we call a $p$-permutation equivalence, that implies an isotypy and is implied by a splendid equivalence. Moreover, we study properties of $p$-permutation equivalences.## References

- J. Alperin and Michel BrouĂ©,
*Local methods in block theory*, Ann. of Math. (2)**110**(1979), no.Â 1, 143â157. MR**541333**, DOI 10.2307/1971248 - David Benson,
*Modular representation theory: new trends and methods*, Lecture Notes in Mathematics, vol. 1081, Springer-Verlag, Berlin, 1984. MR**765858** - Robert Boltje,
*Linear source modules and trivial source modules*, Group representations: cohomology, group actions and topology (Seattle, WA, 1996) Proc. Sympos. Pure Math., vol. 63, Amer. Math. Soc., Providence, RI, 1998, pp.Â 7â30. MR**1603127**, DOI 10.1090/pspum/063/1603127 - R. Boltje: Chain complexes for Alperinâs weight conjecture and Dadeâs ordinary conjecture in the abelian defect group case. To appear in
*J. Group Theory*. Available at http://math.ucsc.edu/~boltje/publications.html. - Robert Boltje and Burkhard KĂŒlshammer,
*A generalized Brauer construction and linear source modules*, Trans. Amer. Math. Soc.**352**(2000), no.Â 7, 3411â3428. MR**1694281**, DOI 10.1090/S0002-9947-00-02530-7 - Robert Boltje and Burkhard KĂŒlshammer,
*Monomial resolutions of trivial source modules*, J. Algebra**248**(2002), no.Â 1, 146â201. MR**1879012**, DOI 10.1006/jabr.2001.8816 - Michel BrouĂ©,
*On Scott modules and $p$-permutation modules: an approach through the Brauer morphism*, Proc. Amer. Math. Soc.**93**(1985), no.Â 3, 401â408. MR**773988**, DOI 10.1090/S0002-9939-1985-0773988-9 - Michel BrouĂ©,
*IsomĂ©tries parfaites, types de blocs, catĂ©gories dĂ©rivĂ©es*, AstĂ©risque**181-182**(1990), 61â92 (French). MR**1051243** - Morton E. Harris,
*Splendid derived equivalences for blocks of finite groups*, J. London Math. Soc. (2)**60**(1999), no.Â 1, 71â82. MR**1721816**, DOI 10.1112/S0024610799007619 - Hirosi Nagao and Yukio Tsushima,
*Representations of finite groups*, Academic Press, Inc., Boston, MA, 1989. Translated from the Japanese. MR**998775** - Jeremy Rickard,
*Splendid equivalences: derived categories and permutation modules*, Proc. London Math. Soc. (3)**72**(1996), no.Â 2, 331â358. MR**1367082**, DOI 10.1112/plms/s3-72.2.331 - Jacques ThĂ©venaz,
*$G$-algebras and modular representation theory*, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995. Oxford Science Publications. MR**1365077**

## Additional Information

**Robert Boltje**- Affiliation: Department of Mathematics, University of California, Santa Cruz, California 95064
- Email: boltje@ucsc.edu
**Bangteng Xu**- Affiliation: Department of Mathematics, University of California, Santa Cruz, California 95064
- Address at time of publication: Department of Mathematics, Eastern Kentucky University, 521 Lancaster Avenue, Wallace 313, Richmond, Kentucky 40475
- Email: btxu@math.ucsc.edu, bangteng.xu@eku.edu
- Received by editor(s): October 5, 2005
- Published electronically: May 19, 2008
- Additional Notes: The first authorâs research was supported by the NSF, DMS-0200592
- © Copyright 2008
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc.
**360**(2008), 5067-5087 - MSC (2000): Primary 20C20, 20C15, 19A22
- DOI: https://doi.org/10.1090/S0002-9947-08-04393-6
- MathSciNet review: 2415064