## Asymptotic behaviour of codimensions of p. i. algebras satisfying Capelli identities

HTML articles powered by AMS MathViewer

- by Allan Berele and Amitai Regev PDF
- Trans. Amer. Math. Soc.
**360**(2008), 5155-5172 Request permission

## Abstract:

Let $A$ be a p. i. algebra with 1 in characteristic zero, satisfying a Capelli identity. Then the cocharacter sequence $c_n(A)$ is asymptotic to a function of the form $an^g\ell ^n$, where $\ell \in \mathbb {N}$ and $g \in \mathbb {Z}$.## References

- William Beckner and Amitai Regev,
*Asymptotics and algebraicity of some generating functions*, Adv. in Math.**65**(1987), no. 1, 1–15. MR**893467**, DOI 10.1016/0001-8708(87)90015-6 - William Beckner and Amitai Regev,
*Asymptotic estimates using probability*, Adv. Math.**138**(1998), no. 1, 1–14. MR**1645060**, DOI 10.1006/aima.1994.1503 - A. Ya. Belov,
*Rationality of Hilbert series with respect to free algebras*, Uspekhi Mat. Nauk**52**(1997), no. 2(314), 153–154 (Russian); English transl., Russian Math. Surveys**52**(1997), no. 2, 394–395. MR**1480146**, DOI 10.1070/RM1997v052n02ABEH001786 - A. Berele,
*Approximate multiplicities in the trace cocharacter sequence of two three-by-three matrices*, Comm. Algebra**25**(1997), no. 6, 1975–1983. MR**1446144**, DOI 10.1080/00927879708825967 - Allan Berele,
*Applications of Belov’s theorem to the cocharacter sequence of p.i. algebras*, J. Algebra**298**(2006), no. 1, 208–214. MR**2215124**, DOI 10.1016/j.jalgebra.2005.09.011 - A. Berele and A. Regev,
*Codimensions of products and of intersections of verbally prime $T$-ideals*, Israel J. Math.**103**(1998), 17–28. MR**1613536**, DOI 10.1007/BF02762265 - Allan Berele and Amitai Regev,
*Exponential growth for codimensions of some p.i. algebras*, J. Algebra**241**(2001), no. 1, 118–145. MR**1838847**, DOI 10.1006/jabr.2000.8672 - Vesselin Drensky,
*Codimensions of $T$-ideals and Hilbert series of relatively free algebras*, J. Algebra**91**(1984), no. 1, 1–17. MR**765766**, DOI 10.1016/0021-8693(84)90121-2 - Vesselin Drensky and Georgi K. Genov,
*Multiplicities of Schur functions in invariants of two $3\times 3$ matrices*, J. Algebra**264**(2003), no. 2, 496–519. MR**1981418**, DOI 10.1016/S0021-8693(03)00070-X - A. Giambruno and M. Zaicev,
*On codimension growth of finitely generated associative algebras*, Adv. Math.**140**(1998), no. 2, 145–155. MR**1658530**, DOI 10.1006/aima.1998.1766 - A. Giambruno and M. Zaicev,
*Exponential codimension growth of PI algebras: an exact estimate*, Adv. Math.**142**(1999), no. 2, 221–243. MR**1680198**, DOI 10.1006/aima.1998.1790 - Branko Grünbaum,
*Convex polytopes*, Pure and Applied Mathematics, Vol. 16, Interscience Publishers John Wiley & Sons, Inc., New York, 1967. With the cooperation of Victor Klee, M. A. Perles and G. C. Shephard. MR**0226496** - Amitai Regev and Alexander Guterman,
*On the growth of identities*, Algebra (Moscow, 1998) de Gruyter, Berlin, 2000, pp. 319–330. MR**1754678** - Amitai Regev,
*Asymptotic values for degrees associated with strips of Young diagrams*, Adv. in Math.**41**(1981), no. 2, 115–136. MR**625890**, DOI 10.1016/0001-8708(81)90012-8 - Amitai Regev,
*Algebras satisfying a Capelli identity*, Israel J. Math.**33**(1979), no. 2, 149–154. MR**571250**, DOI 10.1007/BF02760555 - Günter M. Ziegler,
*Lectures on polytopes*, Graduate Texts in Mathematics, vol. 152, Springer-Verlag, New York, 1995. MR**1311028**, DOI 10.1007/978-1-4613-8431-1

## Additional Information

**Allan Berele**- Affiliation: Department of Mathematics, DePaul University, Chicago, Illinois 60614
- Email: aberele@condor.depaul.edu
**Amitai Regev**- Affiliation: Department of Theoretical Mathematics, Weizmann Institute, Rehovot, Israel
- Email: amitai.regev@wisdom.weizmann.ac.il
- Received by editor(s): June 5, 2006
- Published electronically: May 27, 2008
- Additional Notes: The work of the first author was supported by both the Faculty Research Council of DePaul University and the National Security Agency, under Grant MDA904-500270. The United States Government is authorized to reproduce and distribute reprints notwithstanding any copyright notation herein.

The work of the second author was partially supported by ISF grant 947-04. - © Copyright 2008 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**360**(2008), 5155-5172 - MSC (2000): Primary 16R10
- DOI: https://doi.org/10.1090/S0002-9947-08-04500-5
- MathSciNet review: 2415069