Polyhedral realization of the highest weight crystals for generalized Kac-Moody algebras
HTML articles powered by AMS MathViewer
- by Dong-Uy Shin PDF
- Trans. Amer. Math. Soc. 360 (2008), 6371-6387 Request permission
Abstract:
In this paper, we give a polyhedral realization of the highest weight crystals $B(\lambda )$ associated with the highest weight modules $V(\lambda )$ for the generalized Kac-Moody algebras. As applications, we give explicit descriptions of crystals for the generalized Kac-Moody algebras of ranks 2, 3, and Monster algebras.References
- Richard Borcherds, Generalized Kac-Moody algebras, J. Algebra 115 (1988), no. 2, 501–512. MR 943273, DOI 10.1016/0021-8693(88)90275-X
- Richard E. Borcherds, Monstrous moonshine and monstrous Lie superalgebras, Invent. Math. 109 (1992), no. 2, 405–444. MR 1172696, DOI 10.1007/BF01232032
- Gerald Cliff, Crystal bases and Young tableaux, J. Algebra 202 (1998), no. 1, 10–35. MR 1614241, DOI 10.1006/jabr.1997.7244
- J. H. Conway and S. P. Norton, Monstrous moonshine, Bull. London Math. Soc. 11 (1979), no. 3, 308–339. MR 554399, DOI 10.1112/blms/11.3.308
- V. G. Drinfel′d, Hopf algebras and the quantum Yang-Baxter equation, Dokl. Akad. Nauk SSSR 283 (1985), no. 5, 1060–1064 (Russian). MR 802128
- Michio Jimbo, A $q$-difference analogue of $U({\mathfrak {g}})$ and the Yang-Baxter equation, Lett. Math. Phys. 10 (1985), no. 1, 63–69. MR 797001, DOI 10.1007/BF00704588
- Kyeonghoon Jeong, Seok-Jin Kang, and Masaki Kashiwara, Crystal bases for quantum generalized Kac-Moody algebras, Proc. London Math. Soc. (3) 90 (2005), no. 2, 395–438. MR 2142133, DOI 10.1112/S0024611504015023
- Kyeonghoon Jeong, Seok-Jin Kang, Masaki Kashiwara, and Dong-Uy Shin, Abstract crystals for quantum generalized Kac-Moody algebras, Int. Math. Res. Not. IMRN 1 (2007), Art. ID rnm001, 19. MR 2331899, DOI 10.1093/imrn/rnm001
- Seok-Jin Kang, Quantum deformations of generalized Kac-Moody algebras and their modules, J. Algebra 175 (1995), no. 3, 1041–1066. MR 1341758, DOI 10.1006/jabr.1995.1226
- Seok-Jin Kang, Crystal bases for quantum affine algebras and combinatorics of Young walls, Proc. London Math. Soc. (3) 86 (2003), no. 1, 29–69. MR 1971463, DOI 10.1112/S0024611502013734
- Seok-Jin Kang, Masaki Kashiwara, Kailash C. Misra, Tetsuji Miwa, Toshiki Nakashima, and Atsushi Nakayashiki, Affine crystals and vertex models, Infinite analysis, Part A, B (Kyoto, 1991) Adv. Ser. Math. Phys., vol. 16, World Sci. Publ., River Edge, NJ, 1992, pp. 449–484. MR 1187560, DOI 10.1142/s0217751x92003896
- Masaki Kashiwara, Crystalizing the $q$-analogue of universal enveloping algebras, Comm. Math. Phys. 133 (1990), no. 2, 249–260. MR 1090425
- M. Kashiwara, On crystal bases of the $Q$-analogue of universal enveloping algebras, Duke Math. J. 63 (1991), no. 2, 465–516. MR 1115118, DOI 10.1215/S0012-7094-91-06321-0
- Masaki Kashiwara, The crystal base and Littelmann’s refined Demazure character formula, Duke Math. J. 71 (1993), no. 3, 839–858. MR 1240605, DOI 10.1215/S0012-7094-93-07131-1
- Masaki Kashiwara and Toshiki Nakashima, Crystal graphs for representations of the $q$-analogue of classical Lie algebras, J. Algebra 165 (1994), no. 2, 295–345. MR 1273277, DOI 10.1006/jabr.1994.1114
- Peter Littelmann, Paths and root operators in representation theory, Ann. of Math. (2) 142 (1995), no. 3, 499–525. MR 1356780, DOI 10.2307/2118553
- Toshiki Nakashima, Polyhedral realizations of crystal bases for integrable highest weight modules, J. Algebra 219 (1999), no. 2, 571–597. MR 1706829, DOI 10.1006/jabr.1999.7920
- Toshiki Nakashima and Andrei Zelevinsky, Polyhedral realizations of crystal bases for quantized Kac-Moody algebras, Adv. Math. 131 (1997), no. 1, 253–278. MR 1475048, DOI 10.1006/aima.1997.1670
- D.-U. Shin, Polyhedral realization of crystal bases for generalized Kac-Moody algebras, J. London Math. Soc. (2) 77 (2008), 273–286.
Additional Information
- Dong-Uy Shin
- Affiliation: Department of Mathematics Education, Hanyang University, Seoul 133-791, Korea
- Email: dushin@hanyang.ac.kr
- Received by editor(s): December 11, 2005
- Received by editor(s) in revised form: November 8, 2006
- Published electronically: July 28, 2008
- Additional Notes: This research was supported by the research fund of Hanyang University (HY-2007-000-0000-5889).
- © Copyright 2008
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 360 (2008), 6371-6387
- MSC (2000): Primary 81R50; Secondary 17B37
- DOI: https://doi.org/10.1090/S0002-9947-08-04446-2
- MathSciNet review: 2434291