Trivial source bimodule rings for blocks and -permutation equivalences
Author:
Markus Linckelmann
Journal:
Trans. Amer. Math. Soc. 361 (2009), 1279-1316
MSC (2000):
Primary 20C20
DOI:
https://doi.org/10.1090/S0002-9947-08-04577-7
Published electronically:
October 10, 2008
MathSciNet review:
2457399
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We associate with any -block of a finite group a Grothendieck ring of certain
-permutation bimodules. We extend the notion of
-permutation equivalences introduced by Boltje and Xu (2006) to source algebras of
-blocks of finite groups. We show that a
-permutation equivalence between two source algebras
,
of blocks with a common defect group and same local structure induces an isotypy.
- 1. J. Alperin and Michel Broué, Local methods in block theory, Ann. of Math. (2) 110 (1979), no. 1, 143–157. MR 541333, https://doi.org/10.2307/1971248
- 2. R. Boltje, Chain complexes for Alperin's weight conjecture and Dade's ordinary conjecture in the abelian defect group case, J. Group Theory, to appear.
- 3. Robert Boltje and Burkhard Külshammer, A generalized Brauer construction and linear source modules, Trans. Amer. Math. Soc. 352 (2000), no. 7, 3411–3428. MR 1694281, https://doi.org/10.1090/S0002-9947-00-02530-7
- 4.
R. Boltje, B. Xu, On
-permutation equivalences: between Rickard equivalences and isotypies, preprint (2006).
- 5. S. Bouc, Résolutions de foncteurs de Mackey, Group representations: cohomology, group actions and topology (Seattle, WA, 1996) Proc. Sympos. Pure Math., vol. 63, Amer. Math. Soc., Providence, RI, 1998, pp. 31–83 (French, with English summary). MR 1603131, https://doi.org/10.1090/pspum/063/1603131
- 6. Carles Broto, Ran Levi, and Bob Oliver, The homotopy theory of fusion systems, J. Amer. Math. Soc. 16 (2003), no. 4, 779–856. MR 1992826, https://doi.org/10.1090/S0894-0347-03-00434-X
- 7. Michel Broué, Brauer coefficients of 𝑝-subgroups associated with a 𝑝-block of a finite group, J. Algebra 56 (1979), no. 2, 365–383. MR 528581, https://doi.org/10.1016/0021-8693(79)90343-0
- 8. Michel Broué, Isométries parfaites, types de blocs, catégories dérivées, Astérisque 181-182 (1990), 61–92 (French). MR 1051243
- 9. Michel Broué and Lluís Puig, Characters and local structure in 𝐺-algebras, J. Algebra 63 (1980), no. 2, 306–317. MR 570714, https://doi.org/10.1016/0021-8693(80)90074-5
- 10. Michel Broué and Lluís Puig, A Frobenius theorem for blocks, Invent. Math. 56 (1980), no. 2, 117–128. MR 558864, https://doi.org/10.1007/BF01392547
- 11. Walter Feit, The representation theory of finite groups, North-Holland Mathematical Library, vol. 25, North-Holland Publishing Co., Amsterdam-New York, 1982. MR 661045
- 12. Radha Kessar and Markus Linckelmann, On blocks of strongly 𝑝-solvable groups, Arch. Math. (Basel) 87 (2006), no. 6, 481–487. MR 2283678, https://doi.org/10.1007/s00013-006-1826-3
- 13. Markus Linckelmann, The source algebras of blocks with a Klein four defect group, J. Algebra 167 (1994), no. 3, 821–854. MR 1287072, https://doi.org/10.1006/jabr.1994.1214
- 14. Markus Linckelmann, On stable equivalences of Morita type, Derived equivalences for group rings, Lecture Notes in Math., vol. 1685, Springer, Berlin, 1998, pp. 221–232. MR 1649847, https://doi.org/10.1007/BFb0096377
- 15. Markus Linckelmann, On derived equivalences and local structure of blocks of finite groups, Turkish J. Math. 22 (1998), no. 1, 93–107. MR 1631770
- 16. Markus Linckelmann, Transfer in Hochschild cohomology of blocks of finite groups, Algebr. Represent. Theory 2 (1999), no. 2, 107–135. MR 1702272, https://doi.org/10.1023/A:1009979222100
- 17. Markus Linckelmann, On splendid derived and stable equivalences between blocks of finite groups, J. Algebra 242 (2001), no. 2, 819–843. MR 1848975, https://doi.org/10.1006/jabr.2001.8812
- 18. Markus Linckelmann, Simple fusion systems and the Solomon 2-local groups, J. Algebra 296 (2006), no. 2, 385–401. MR 2201048, https://doi.org/10.1016/j.jalgebra.2005.09.024
- 19. Markus Linckelmann, Introduction to fusion systems, Group representation theory, EPFL Press, Lausanne, 2007, pp. 79–113. MR 2336638
- 20. Andrei Marcus, On equivalences between blocks of group algebras: reduction to the simple components, J. Algebra 184 (1996), no. 2, 372–396. MR 1409219, https://doi.org/10.1006/jabr.1996.0265
- 21. Lluís Puig, Pointed groups and construction of characters, Math. Z. 176 (1981), no. 2, 265–292. MR 607966, https://doi.org/10.1007/BF01261873
- 22. Lluís Puig, Local fusions in block source algebras, J. Algebra 104 (1986), no. 2, 358–369. MR 866781, https://doi.org/10.1016/0021-8693(86)90221-8
- 23. Lluís Puig, Nilpotent blocks and their source algebras, Invent. Math. 93 (1988), no. 1, 77–116. MR 943924, https://doi.org/10.1007/BF01393688
- 24. Lluís Puig, On the local structure of Morita and Rickard equivalences between Brauer blocks, Progress in Mathematics, vol. 178, Birkhäuser Verlag, Basel, 1999. MR 1707300
- 25. Jeremy Rickard, Splendid equivalences: derived categories and permutation modules, Proc. London Math. Soc. (3) 72 (1996), no. 2, 331–358. MR 1367082, https://doi.org/10.1112/plms/s3-72.2.331
- 26. Raphaël Rouquier, The derived category of blocks with cyclic defect groups, Derived equivalences for group rings, Lecture Notes in Math., vol. 1685, Springer, Berlin, 1998, pp. 199–220. MR 1649846, https://doi.org/10.1007/BFb0096376
- 27. Raphaël Rouquier, Block theory via stable and Rickard equivalences, Modular representation theory of finite groups (Charlottesville, VA, 1998) de Gruyter, Berlin, 2001, pp. 101–146. MR 1889341
- 28. Jacques Thévenaz, 𝐺-algebras and modular representation theory, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995. Oxford Science Publications. MR 1365077
Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 20C20
Retrieve articles in all journals with MSC (2000): 20C20
Additional Information
Markus Linckelmann
Affiliation:
Department of Mathematical Sciences, University of Aberdeen, Meston Building, Aberdeen, AB24 3UE, United Kingdom
DOI:
https://doi.org/10.1090/S0002-9947-08-04577-7
Received by editor(s):
December 14, 2006
Published electronically:
October 10, 2008
Article copyright:
© Copyright 2008
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.