Parabolic Kazhdan-Lusztig polynomials for Hermitian symmetric pairs
Author:
Francesco Brenti
Journal:
Trans. Amer. Math. Soc. 361 (2009), 1703-1729
MSC (2000):
Primary 05E99; Secondary 20F55
DOI:
https://doi.org/10.1090/S0002-9947-08-04458-9
Published electronically:
October 29, 2008
MathSciNet review:
2465813
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We study the parabolic Kazhdan-Lusztig polynomials for Hermitian symmetric pairs. In particular, we show that these polynomials are always either zero or a monic power of , and that they are combinatorial invariants.
- 1. A. Björner, private communication, March 1992.
- 2. Anders Björner and Francesco Brenti, Combinatorics of Coxeter groups, Graduate Texts in Mathematics, vol. 231, Springer, New York, 2005. MR 2133266
- 3. Brian D. Boe, Kazhdan-Lusztig polynomials for Hermitian symmetric spaces, Trans. Amer. Math. Soc. 309 (1988), no. 1, 279–294. MR 957071, https://doi.org/10.1090/S0002-9947-1988-0957071-2
- 4. Francesco Brenti, Kazhdan-Lusztig and 𝑅-polynomials, Young’s lattice, and Dyck partitions, Pacific J. Math. 207 (2002), no. 2, 257–286. MR 1972246, https://doi.org/10.2140/pjm.2002.207.257
- 5. Francesco Brenti, Parabolic Kazhdan-Lusztig 𝑅-polynomials for Hermitian symmetric pairs, J. Algebra 318 (2007), no. 1, 412–429. MR 2363142, https://doi.org/10.1016/j.jalgebra.2007.08.001
- 6. Luis G. Casian and David H. Collingwood, The Kazhdan-Lusztig conjecture for generalized Verma modules, Math. Z. 195 (1987), no. 4, 581–600. MR 900346, https://doi.org/10.1007/BF01166705
- 7. Vinay V. Deodhar, On some geometric aspects of Bruhat orderings. II. The parabolic analogue of Kazhdan-Lusztig polynomials, J. Algebra 111 (1987), no. 2, 483–506. MR 916182, https://doi.org/10.1016/0021-8693(87)90232-8
- 8. Vinay V. Deodhar, Duality in parabolic set up for questions in Kazhdan-Lusztig theory, J. Algebra 142 (1991), no. 1, 201–209. MR 1125213, https://doi.org/10.1016/0021-8693(91)90225-W
- 9. J. Haglund, M. Haiman, and N. Loehr, A combinatorial formula for Macdonald polynomials, J. Amer. Math. Soc. 18 (2005), no. 3, 735–761. MR 2138143, https://doi.org/10.1090/S0894-0347-05-00485-6
- 10. J. Haglund, M. Haiman, N. Loehr, J. B. Remmel, and A. Ulyanov, A combinatorial formula for the character of the diagonal coinvariants, Duke Math. J. 126 (2005), no. 2, 195–232. MR 2115257, https://doi.org/10.1215/S0012-7094-04-12621-1
- 11. James E. Humphreys, Reflection groups and Coxeter groups, Cambridge Studies in Advanced Mathematics, vol. 29, Cambridge University Press, Cambridge, 1990. MR 1066460
- 12. Masaki Kashiwara and Toshiyuki Tanisaki, Parabolic Kazhdan-Lusztig polynomials and Schubert varieties, J. Algebra 249 (2002), no. 2, 306–325. MR 1901161, https://doi.org/10.1006/jabr.2000.8690
- 13. David Kazhdan and George Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), no. 2, 165–184. MR 560412, https://doi.org/10.1007/BF01390031
- 14. Bernard Leclerc and Jean-Yves Thibon, Littlewood-Richardson coefficients and Kazhdan-Lusztig polynomials, Combinatorial methods in representation theory (Kyoto, 1998) Adv. Stud. Pure Math., vol. 28, Kinokuniya, Tokyo, 2000, pp. 155–220. MR 1864481, https://doi.org/10.2969/aspm/02810155
- 15. Wolfgang Soergel, Kazhdan-Lusztig polynomials and a combinatoric[s] for tilting modules, Represent. Theory 1 (1997), 83–114. MR 1444322, https://doi.org/10.1090/S1088-4165-97-00021-6
- 16. Wolfgang Soergel, Charakterformeln für Kipp-Moduln über Kac-Moody-Algebren, Represent. Theory 1 (1997), 115–132. MR 1445716, https://doi.org/10.1090/S1088-4165-97-00017-4
- 17. R. P. Stanley, Enumerative Combinatorics, vol. 1, Wadsworth and Brooks/Cole, Monterey, CA, 1986.
- 18. Richard P. Stanley, Enumerative combinatorics. Vol. 2, Cambridge Studies in Advanced Mathematics, vol. 62, Cambridge University Press, Cambridge, 1999. With a foreword by Gian-Carlo Rota and appendix 1 by Sergey Fomin. MR 1676282
- 19. Michela Varagnolo and Eric Vasserot, On the decomposition matrices of the quantized Schur algebra, Duke Math. J. 100 (1999), no. 2, 267–297. MR 1722955, https://doi.org/10.1215/S0012-7094-99-10010-X
Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 05E99, 20F55
Retrieve articles in all journals with MSC (2000): 05E99, 20F55
Additional Information
Francesco Brenti
Affiliation:
Dipartimento di Matematica, Università di Roma “Tor Vergata”, Via della Ricerca Scientifica, 1, 00133 Roma, Italy
Email:
brenti@mat.uniroma2.it
DOI:
https://doi.org/10.1090/S0002-9947-08-04458-9
Received by editor(s):
August 7, 2006
Received by editor(s) in revised form:
November 9, 2006
Published electronically:
October 29, 2008
Additional Notes:
The author was partially supported by EU grant HPRN-CT-2001-00272. Part of this research was carried out while the author was a member of the Mittag-Leffler Institut in Djürsholm, Sweden, whose hospitality and financial support are gratefully acknowledged.
Article copyright:
© Copyright 2008
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.